Suppr超能文献

基于知识-数据融合驱动的可控悬架鲁棒容错控制研究

Research on robust fault-tolerant control of the controllable suspension based on knowledge-data fusion driven.

作者信息

Zhu Honglin, Ding Weiping, Yang Mingliang, Wu Yudong, Du Tong

机构信息

School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.

National Laboratory for Rail Transportation, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.

出版信息

Sci Rep. 2023 Dec 20;13(1):22723. doi: 10.1038/s41598-023-50082-8.

Abstract

For the robust fault-tolerant control of the controllable suspension system, a control strategy driven by knowledge-data fusion is proposed. Firstly, the boundary fuzziness between perturbation type uncertainty and gain type fault is analyzed, and then a data-driven method is introduced to avoid the state estimation of system uncertainty and fault. The proximal policy optimization algorithm in reinforcement learning is selected to construct a "data control law", to deal with uncertainty and fault. On the other hand, based on the classical sky-hook control, the "knowledge control law" for system performance optimization is designed, taking into account the nonlinear and non-stationary characteristics of the system. Furthermore, the dependency between robust fault tolerance and performance optimization control is revealed, and the two control laws are fused by numerical multiplication, to realize the performance matching optimization control of robust fault tolerance of controllable suspension system driven by knowledge-data fusion. Finally, the effectiveness and feasibility of the proposed method are verified by the simulation and real-time experiment of non-stationary excitation and near-stationary excitation under the combination of uncertainty and fault.

摘要

针对可控悬架系统的鲁棒容错控制,提出了一种知识 - 数据融合驱动的控制策略。首先,分析了摄动型不确定性与增益型故障之间的边界模糊性,然后引入一种数据驱动方法以避免对系统不确定性和故障进行状态估计。选择强化学习中的近端策略优化算法来构建“数据控制律”,以处理不确定性和故障。另一方面,基于经典的天棚控制,考虑系统的非线性和非平稳特性,设计了用于系统性能优化的“知识控制律”。此外,揭示了鲁棒容错与性能优化控制之间的依赖关系,并通过数值乘法将两种控制律融合,以实现知识 - 数据融合驱动的可控悬架系统鲁棒容错的性能匹配优化控制。最后,通过在不确定性和故障组合下非平稳激励和近平稳激励的仿真和实时实验,验证了所提方法的有效性和可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bac/10733293/798d82b67aa7/41598_2023_50082_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验