Einhaus Jakob, Gaudilliere Dyani K, Hedou Julien, Feyaerts Dorien, Ozawa Michael G, Sato Masaki, Ganio Edward A, Tsai Amy S, Stelzer Ina A, Bruckman Karl C, Amar Jonas N, Sabayev Maximilian, Bonham Thomas A, Gillard Joshua, Diop Maïgane, Cambriel Amelie, Mihalic Zala N, Valdez Tulio, Liu Stanley Y, Feirrera Leticia, Lam David K, Sunwoo John B, Schürch Christian M, Gaudilliere Brice, Han Xiaoyuan
Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.
Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany.
iScience. 2023 Nov 20;26(12):108486. doi: 10.1016/j.isci.2023.108486. eCollection 2023 Dec 15.
Oral squamous cell carcinoma (OSCC), a prevalent and aggressive neoplasm, poses a significant challenge due to poor prognosis and limited prognostic biomarkers. Leveraging highly multiplexed imaging mass cytometry, we investigated the tumor immune microenvironment (TIME) in OSCC biopsies, characterizing immune cell distribution and signaling activity at the tumor-invasive front. Our spatial subsetting approach standardized cellular populations by tissue zone, improving feature reproducibility and revealing TIME patterns accompanying loss-of-differentiation. Employing a machine-learning pipeline combining reliable feature selection with multivariable modeling, we achieved accurate histological grade classification (AUC = 0.88). Three model features correlated with clinical outcomes in an independent cohort: granulocyte MAPKAPK2 signaling at the tumor front, stromal CD4 memory T cell size, and the distance of fibroblasts from the tumor border. This study establishes a robust modeling framework for distilling complex imaging data, uncovering sentinel characteristics of the OSCC TIME to facilitate prognostic biomarkers discovery for recurrence risk stratification and immunomodulatory therapy development.
口腔鳞状细胞癌(OSCC)是一种常见且侵袭性强的肿瘤,因其预后较差且预后生物标志物有限而构成重大挑战。利用高度多重成像质谱流式细胞术,我们研究了OSCC活检组织中的肿瘤免疫微环境(TIME),表征了肿瘤浸润前沿的免疫细胞分布和信号活性。我们的空间子集分析方法通过组织区域对细胞群体进行标准化,提高了特征的可重复性,并揭示了伴随分化丧失的TIME模式。采用结合可靠特征选择和多变量建模的机器学习流程,我们实现了准确的组织学分级分类(AUC = 0.88)。三个模型特征与独立队列中的临床结果相关:肿瘤前沿的粒细胞MAPKAPK2信号、基质CD4记忆T细胞大小以及成纤维细胞与肿瘤边界的距离。本研究建立了一个强大的建模框架,用于提炼复杂的成像数据,揭示OSCC TIME的哨兵特征,以促进用于复发风险分层和免疫调节治疗开发的预后生物标志物的发现。