Suppr超能文献

基于人工智能的物联网视觉图像设计

Visual image design of the internet of things based on AI intelligence.

作者信息

Tian Tian

机构信息

College of Fine Arts and Design, Mudanjiang Normal University, Mudanjiang, 157011, Heilongjiang, China.

出版信息

Heliyon. 2023 Nov 25;9(12):e22845. doi: 10.1016/j.heliyon.2023.e22845. eCollection 2023 Dec.

Abstract

Visual object detection has emerged as a critical technology for Unmanned Arial Vehicle (UAV) use due to advances in computer vision. New developments in fields like communication technology and the UAV needs to be able to act autonomously by gathering data and then making choices. These tendencies have brought us to cutting-edge levels of health care, transportation, energy, monitoring, and security for visual image detection and manufacturing endeavors. These include coordination in communication via IoT, sustainability of IoT network, and optimization challenges in path planning. Because of their limited battery life, these gadgets are limited in their range of communication. UAVs can be seen as terminal devices connected to a large network where a swarm of other UAVs is coordinating their motions, directing one another, and maintaining watch over locations outside its visual range. One of the essential components of UAV-based applications is the ability to recognize objects of interest in aerial photographs taken by UAVs. While aerial photos might be useful, object detection is challenging. As a result, capturing aerial photographs with UAVs is a unique challenge since the size of things in these images might vary greatly. The study proposal included specific information regarding the Detection of Visual Images by UAVs (DVI-UAV) using the IoT and Artificial Intelligence (AI). Included in the study of AI is the concept of DSYolov3. The DSYolov3 model was presented to deal with these problems in the UAV industry. By fusing the channel-wise feature across multiple scales using a spatial pyramid pooling approach, the proposed study creates a novel module, Multi-scale Fusion of Channel Attention (MFCAM), for scale-variant object identification tasks. The method's effectiveness and efficiency have been thoroughly tested and evaluated experimentally. The suggested method would allow us to outperform most current detectors and guarantee that the models will be useable on UAVs. There will be a 95 % success rate in terms of visual image detection, a 94 % success rate in terms of computation cost, a 97 % success rate in terms of accuracy, and a 95 % success rate in terms of effectiveness.

摘要

由于计算机视觉技术的进步,视觉目标检测已成为无人机(UAV)应用中的一项关键技术。通信技术等领域的新发展以及无人机需要能够通过收集数据然后做出选择来自主行动。这些趋势已将我们带到视觉图像检测和制造活动在医疗保健、运输、能源、监测和安全方面的前沿水平。这些包括物联网通信中的协调、物联网网络的可持续性以及路径规划中的优化挑战。由于电池寿命有限,这些设备的通信范围也受到限制。无人机可被视为连接到大型网络的终端设备,在该网络中,一群其他无人机正在协调它们的动作、相互指挥并监视其视觉范围之外的位置。基于无人机的应用的一个关键组成部分是能够识别无人机拍摄的航空照片中感兴趣的物体。虽然航空照片可能有用,但目标检测具有挑战性。因此,用无人机拍摄航空照片是一项独特的挑战,因为这些图像中物体的大小可能差异很大。该研究提案包含了关于使用物联网和人工智能(AI)进行无人机视觉图像检测(DVI-UAV)的具体信息。人工智能研究中包括DSYolov3的概念。提出DSYolov3模型以解决无人机行业中的这些问题。通过使用空间金字塔池化方法跨多个尺度融合通道级特征,该研究提出了一个新颖的模块,即通道注意力多尺度融合(MFCAM),用于尺度变化的目标识别任务。该方法的有效性和效率已通过实验进行了全面测试和评估。所提出的方法将使我们能够超越大多数当前的检测器,并确保这些模型可在无人机上使用。在视觉图像检测方面将有95%的成功率,在计算成本方面有94%的成功率,在准确性方面有97%的成功率,在有效性方面有95%的成功率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1d3/10731056/4c64eab42133/gr8.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验