Zhang Mingjun, Liu Lixia, Tan Yuhao, Jing Yue, Liu Yuxiu, Wang Ziwen, Wang Qingmin
State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300071, P. R. China.
Angew Chem Int Ed Engl. 2024 Feb 5;63(6):e202318344. doi: 10.1002/anie.202318344. Epub 2024 Jan 8.
Sulfilimines, the aza-variants of sulfoxides, are key structural motifs in natural products, pharmaceuticals, and agrochemicals; and sulfilimine synthesis is therefore important in organic chemistry. However, methods for radical sulfilimination remain elusive, and as a result, the structural diversity of currently available sulfilimines is limited. Herein, we report the first protocol for decarboxylative radical sulfilimination reactions between sulfenamides and N-hydroxyphthalimide esters of primary, secondary, and tertiary alkyl carboxylic acids, which were achieved via a combination of photoredox, copper, and Brønsted base catalysis. This novel protocol provided a wide variety of sulfilimines, in addition to serving as an efficient route for the synthesis of S-alkyl/S-aryl homocysteine sulfilimines and S-(4-methylphenyl) homocysteine sulfoximine. Moreover, it could be used for late-stage introduction of a sulfilimine group into structurally complex molecules, thereby avoiding the need to preserve labile organosulfur moieties through multistep synthetic sequences. A mechanism involving photocatalytic substrate transformation and copper-mediated C(sp )-S bond formation is proposed.
亚磺酰亚胺作为亚砜的氮杂变体,是天然产物、药物和农用化学品中的关键结构单元;因此,亚磺酰亚胺的合成在有机化学中具有重要意义。然而,自由基亚磺酰亚胺化方法仍然难以捉摸,因此,目前可用的亚磺酰亚胺的结构多样性受到限制。在此,我们报道了首例通过光氧化还原、铜和布朗斯特碱催化相结合实现的,伯、仲、叔烷基羧酸的亚磺酰胺与N-羟基邻苯二甲酰亚胺酯之间的脱羧自由基亚磺酰亚胺化反应的方法。除了作为合成S-烷基/S-芳基高半胱氨酸亚磺酰亚胺和S-(4-甲基苯基)高半胱氨酸亚砜亚胺的有效途径外,这一新颖的方法还提供了各种各样的亚磺酰亚胺。此外,它可用于将亚磺酰亚胺基团后期引入结构复杂的分子中,从而避免了通过多步合成序列来保护不稳定的有机硫部分的需要。本文提出了一种涉及光催化底物转化和铜介导的C(sp)-S键形成的机理。