Liu Chen, Wang Junlin, He Wa, Zhang Chenhui, Zhang Senfu, Yuan Shuai, Hou Zhipeng, Qin Minghui, Xu Yongbing, Gao Xingsen, Peng Yong, Liu Kai, Qiu Zi Qiang, Liu Jun-Ming, Zhang Xixiang
Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China.
ACS Nano. 2024 Jan 9;18(1):761-769. doi: 10.1021/acsnano.3c09090. Epub 2023 Dec 21.
Magnetic skyrmions are topologically protected swirling spin textures with great potential for future spintronic applications. The ability to induce skyrmion motion using mechanical strain not only stimulates the exploration of exotic physics but also affords the opportunity to develop energy-efficient spintronic devices. However, the experimental realization of strain-driven skyrmion motion remains a formidable challenge. Herein, we demonstrate that the inhomogeneous uniaxial compressive strain can induce the movement of isolated skyrmions from regions of high strain to regions of low strain at room temperature, which was directly observed using an Lorentz transmission electron microscope with a specially designed nanoindentation holder. We discover that the uniaxial compressive strain can transform skyrmions into a single domain with in-plane magnetization, resulting in the coexistence of skyrmions with a single domain along the direction of the strain gradient. Through comprehensive micromagnetic simulations, we reveal that the repulsive interactions between skyrmions and the single domain serve as the driving force behind the skyrmion motion. The precise control of skyrmion motion through strain provides exciting opportunities for designing advanced spintronic devices that leverage the intricate interplay between strain and magnetism.
磁斯格明子是具有拓扑保护的涡旋自旋纹理,在未来自旋电子学应用中具有巨大潜力。利用机械应变诱导斯格明子运动的能力不仅激发了对奇异物理现象的探索,也为开发节能自旋电子器件提供了契机。然而,应变驱动斯格明子运动的实验实现仍然是一项艰巨的挑战。在此,我们证明了非均匀单轴压缩应变能够在室温下诱导孤立的斯格明子从高应变区域向低应变区域移动,这是通过使用配备特殊设计纳米压痕支架的洛伦兹透射电子显微镜直接观察到的。我们发现单轴压缩应变可将斯格明子转变为具有面内磁化的单畴,导致斯格明子与单畴沿应变梯度方向共存。通过全面的微磁模拟,我们揭示了斯格明子与单畴之间的排斥相互作用是斯格明子运动背后的驱动力。通过应变对斯格明子运动进行精确控制,为设计利用应变与磁性之间复杂相互作用的先进自旋电子器件提供了令人兴奋的机会。