Ding Bei, Wang Yadong, Meng Jiahui, Wan Xuejin, Wang Qingping, Xu Xinxing, Zhu Yu, Qin Minghui, Gao Xingsen, Zhong Xiaoyan, Chen Furong, Chen Jiawen, Hu Yangfan, Fu Xuewen, Hou Zhipeng, Liu Junming
Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials and Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
Sci Adv. 2025 May 16;11(20):eadt2698. doi: 10.1126/sciadv.adt2698. Epub 2025 May 14.
Strain engineering in skyrmion-hosting multilayers holds promising potential for spintronic devices. However, conventional strain is below 0.5%, limiting exploration of unique properties under substantial strain. In addition, while uniaxial strain modifies magnetic interactions anisotropically, its influence on skyrmions is underexplored. Here, we integrate skyrmion-hosting multilayers with a flexible liquid crystal film, enabling multistep skyrmion phase transitions through light-induced uniaxial strain up to 1%. Our results demonstrate that skyrmion transitions are sensitive to strain magnitude and orientation. Strain below 0.6% parallel to stripes transforms them into skyrmions. Above 0.6%, skyrmions elongate perpendicularly to the strain direction, exhibiting a negative Poisson effect, with deformation up to 40% at 0.8% strain. Further strain reverts skyrmions back into stripes. Micromagnetic simulations reveal that these phenomena stem from strain-induced anisotropic modulation of Dzyaloshinskii-Moriya interaction. This approach, which combines flexibility, light activation, and substantial uniaxial strain, offers a promising strategy for low-power, multistate spintronic devices.
在承载斯格明子的多层膜中进行应变工程对自旋电子器件具有潜在的应用前景。然而,传统应变低于0.5%,限制了在大应变下对独特性能的探索。此外,虽然单轴应变会各向异性地改变磁相互作用,但其对斯格明子的影响尚未得到充分研究。在此,我们将承载斯格明子的多层膜与柔性液晶膜相结合,通过光致单轴应变达到1%实现了多步斯格明子相变。我们的结果表明,斯格明子转变对应变大小和方向敏感。与条纹平行的低于0.6%的应变会将它们转变为斯格明子。高于0.6%时,斯格明子会垂直于应变方向伸长,表现出负泊松效应,在0.8%应变下变形高达40%。进一步的应变会使斯格明子变回条纹。微磁模拟表明,这些现象源于应变诱导的Dzyaloshinskii-Moriya相互作用的各向异性调制。这种结合了灵活性、光激活和大的单轴应变的方法,为低功耗、多态自旋电子器件提供了一种有前景的策略。