Nicolaou Kyriacos, Mulder Bela M
Institute AMOLF, Science Park 104, 1098XG, Amsterdam, The Netherlands.
Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Sci Rep. 2023 Dec 20;13(1):22815. doi: 10.1038/s41598-023-49566-4.
Cells in an aqueous environment absorb diffusing nutrient molecules through nanoscale protein channels in their outer membranes. Assuming that there are constraints on the number of such channels a cell can produce, we ask the question: given a nondepleting source of nutrients, what is the optimal distribution of these channels over the cell surface? We coarse-grain this problem, phrasing it as a diffusion problem with position-dependent Robin boundary conditions on the surface. The aim is to maximize the steady-state total flux through the partially absorbing surface under an integral constraint on the local reactivities. We develop an algorithm to tackle this problem that uses the stored and processed results of a particle-based simulation with reflective boundary conditions to a posteriori estimate absorption flux at essentially negligible additional computational cost. We validate the algorithm against a few cases for which analytical or semi-analytical results are available. We apply it to two examples: a spherical cell in the presence of a point source and a spheroidal cell with an isotropic source at infinity. In the former case, there is a significant gain relative to the homogeneous case, while in the latter case the gain is only [Formula: see text].
处于水环境中的细胞通过其外膜上的纳米级蛋白质通道吸收扩散的营养分子。假设细胞能够产生的此类通道数量存在限制,我们提出这样一个问题:在营养物质来源不枯竭的情况下,这些通道在细胞表面的最优分布是怎样的?我们对这个问题进行粗粒化处理,将其表述为一个在表面具有位置依赖的罗宾边界条件的扩散问题。目标是在局部反应性的积分约束下,使通过部分吸收表面的稳态总通量最大化。我们开发了一种算法来解决这个问题,该算法利用具有反射边界条件的基于粒子的模拟的存储和处理结果,以基本上可忽略不计的额外计算成本来后验估计吸收通量。我们针对一些可获得解析或半解析结果的情况对该算法进行了验证。我们将其应用于两个例子:存在点源时的球形细胞和在无穷远处具有各向同性源的椭球形细胞。在前一种情况下,相对于均匀情况有显著增益,而在后一种情况下增益仅为[公式:见原文]。