Suppr超能文献

氢键超分子纳米捕集器实现了客体酶的界面激活。

Hydrogen-Bonded Supramolecular Nanotrap Enabling the Interfacial Activation of Hosted Enzymes.

机构信息

Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.

KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.

出版信息

J Am Chem Soc. 2024 Jan 24;146(3):1967-1976. doi: 10.1021/jacs.3c09647. Epub 2023 Dec 22.

Abstract

Engineering nanotraps to immobilize fragile enzymes provides new insights into designing stable and sustainable biocatalysts. However, the trade-off between activity and stability remains a long-standing challenge due to the inevitable diffusion barrier set up by nanocarriers. Herein, we report a synergetic interfacial activation strategy by virtue of hydrogen-bonded supramolecular encapsulation. The pore wall of the nanotrap, in which the enzyme is encapsulated, is modified with methyl struts in an atomically precise position. This well-designed supramolecular pore results in a synergism of hydrogen-bonded and hydrophobic interactions with the hosted enzyme, and it can modulate the catalytic center of the enzyme into a favorable configuration with high substrate accessibility and binding capability, which shows up to a 4.4-fold reaction rate and 4.9-fold conversion enhancements compared to free enzymes. This work sheds new light on the interfacial activation of enzymes using supramolecular engineering and also showcases the feasibility of interfacial assembly to access hierarchical biocatalysts featuring high activity and stability simultaneously.

摘要

利用纳米陷阱固定脆弱的酶为设计稳定且可持续的生物催化剂提供了新的见解。然而,由于纳米载体不可避免的扩散障碍,活性和稳定性之间的权衡仍然是一个长期存在的挑战。在此,我们报告了一种协同的界面激活策略,利用氢键超分子封装。纳米陷阱的孔壁用原子精确位置的甲基支柱进行修饰,其中包封有酶。这种经过精心设计的超分子孔具有氢键和疏水相互作用的协同作用,可以将酶的催化中心调节成有利于具有高底物可及性和结合能力的有利构象,与游离酶相比,反应速率提高了 4.4 倍,转化率提高了 4.9 倍。这项工作为利用超分子工程进行酶的界面激活提供了新的思路,同时也展示了界面组装的可行性,可获得兼具高活性和稳定性的分级生物催化剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验