Suppr超能文献

多层石墨烯/真空/α-氧化钼/真空异质结构间近场辐射热传递中的耦合极化激元

Coupling polaritons in near-field radiative heat transfer between multilayer graphene/vacuum/α-MoO/vacuum heterostructures.

作者信息

Zhang Jihong, Wu Xiaohu, Hu Yang, Yang Bing, Liu Haotuo, Cai Qilin

机构信息

Department of Electronic Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, P. R. China.

Shandong Institute of Advanced Technology, Jinan 250100, Shandong, P. R. China.

出版信息

Phys Chem Chem Phys. 2024 Jan 17;26(3):2101-2110. doi: 10.1039/d3cp03491g.

Abstract

Both materials and structures can significantly affect radiative heat transfer, which is more pronounced in the near-field regime of two-dimensional and hyperbolic materials, and has promising prospects in thermophotovoltaics, radiative cooling, and nanoscale metrology. Hence, it is important to investigate the near-field radiative heat transfer (NFRHT) in complicated heterostructures consisting of two-dimensional and hyperbolic materials. Recent studies have reported that adding vacuum layers to multilayer structures can effectively enhance the NFRHT. Take the case of multilayer graphene/α-MoO heterostructures: the effect of vacuum layers on these heterostructures has not been studied, and hence investigations on adding vacuum layers between graphene and α-MoO layers should be emphasized. In this work, we conduct an investigation of the NFRHT between multilayer graphene/vacuum/α-MoO/vacuum heterostructures. Compared to unit graphene/α-MoO heterostructures without vacuum layers, it is found that NFRHT between the heterostructures with vacuum layers can be suppressed to 49.1% when the gap distance is 10 nm, and can be enhanced to 16.3% when the gap distance is 100 nm. These phenomena are thoroughly explained by the coupling of surface plasmon polaritons and hyperbolic phonon polaritons. Energy transmission coefficients and spectral heat flux are analysed during the calculations changing chemical potentials of graphene, thicknesses of vacuum layers, and α-MoO layers. This study is expected to provide guidance in implementing the thermal management of reasonable NFRHT devices based on graphene/α-MoO heterostructures.

摘要

材料和结构都会对辐射热传递产生显著影响,这在二维和双曲线材料的近场区域更为明显,并且在热光伏、辐射冷却和纳米级计量学方面具有广阔的前景。因此,研究由二维和双曲线材料组成的复杂异质结构中的近场辐射热传递(NFRHT)非常重要。最近的研究报道,在多层结构中添加真空层可以有效地增强NFRHT。以多层石墨烯/α-MoO异质结构为例:尚未研究真空层对这些异质结构的影响,因此应着重研究在石墨烯和α-MoO层之间添加真空层的情况。在这项工作中,我们对多层石墨烯/真空/α-MoO/真空异质结构之间的NFRHT进行了研究。与没有真空层的单元石墨烯/α-MoO异质结构相比,发现当间隙距离为10 nm时,有真空层的异质结构之间的NFRHT可以被抑制到49.1%,而当间隙距离为100 nm时,可以增强到16.3%。这些现象通过表面等离激元极化子和双曲线声子极化子的耦合得到了充分解释。在计算过程中,分析了改变石墨烯的化学势、真空层厚度和α-MoO层厚度时的能量传输系数和光谱热通量。这项研究有望为基于石墨烯/α-MoO异质结构的合理NFRHT器件的热管理提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验