Alcántara Ricardo, Lavela Pedro, Edström Kristina, Fichtner Maximilian, Le Top Khac, Floraki Christina, Aivaliotis Dimitris, Vernardou Dimitra
Departamento de Química Inorgánica e Ingeniería Química, Instituto Químico para la Energía y el Medioambiente (IQEMA), Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain.
Department of Chemistry-Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden.
Nanomaterials (Basel). 2023 Dec 15;13(24):3149. doi: 10.3390/nano13243149.
The investigation into intercalation mechanisms in vanadium pentoxide has garnered significant attention within the realm of research, primarily propelled by its remarkable theoretical capacity for energy storage. This comprehensive review delves into the latest advancements that have enriched our understanding of these intricate mechanisms. Notwithstanding its exceptional storage capacity, the compound grapples with challenges arising from inherent structural instability. Researchers are actively exploring avenues for improving electrodes, with a focus on innovative structures and the meticulous fine-tuning of particle properties. Within the scope of this review, we engage in a detailed discussion on the mechanistic intricacies involved in ion intercalation within the framework of vanadium pentoxide. Additionally, we explore recent breakthroughs in understanding its intercalation properties, aiming to refine the material's structure and morphology. These refinements are anticipated to pave the way for significantly enhanced performance in various energy storage applications.
对五氧化二钒插层机制的研究在研究领域引起了广泛关注,这主要是由其卓越的理论储能能力推动的。这篇综述深入探讨了最新进展,这些进展丰富了我们对这些复杂机制的理解。尽管该化合物具有出色的存储能力,但它仍面临着由固有结构不稳定性引起的挑战。研究人员正在积极探索改进电极的途径,重点是创新结构和对颗粒性质的精细调整。在本综述范围内,我们详细讨论了五氧化二钒框架内离子插层所涉及的机制复杂性。此外,我们探索了在理解其插层性质方面的最新突破,旨在优化材料的结构和形态。预计这些改进将为各种储能应用中的性能显著提升铺平道路。