Diem Achim M, Fenk Bernhard, Bill Joachim, Burghard Zaklina
Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, 70569 Stuttgart, Germany.
Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.
Nanomaterials (Basel). 2020 Jan 30;10(2):247. doi: 10.3390/nano10020247.
Nowadays, research on electrochemical storage systems moves into the direction of post-lithium-ion batteries, such as aluminum-ion batteries, and the exploration of suitable materials for such batteries. Vanadium pentoxide (VO) is one of the most promising host materials for the intercalation of multivalent ions. Here, we report on the fabrication of a binder-free and self-supporting VO micrometer-thick paper-like electrode material and its use as the cathode for rechargeable aluminum-ion batteries. The electrical conductivity of the cathode was significantly improved by a novel in-situ and self-limiting copper migration approach into the VO structure. This process takes advantage of the dissolution of Cu by the ionic liquid-based electrolyte, as well as the presence of two different accommodation sites in the nanostructured VO available for aluminum-ions and the migrated Cu. Furthermore, the advanced nanostructured cathode delivered a specific discharge capacity of up to ~170 mAh g and the reversible intercalation of Al for more than 500 cycles with a high Coulomb efficiency reaching nearly 100%. The binder-free concept results in an energy density of 74 Wh kg, which shows improved energy density in comparison to the so far published VO-based cathodes. Our results provide valuable insights for the future design and development of novel binder-free and self-supporting electrodes for rechargeable multivalent metal-ion batteries associating a high energy density, cycling stability, safety and low cost.
如今,电化学储能系统的研究朝着后锂离子电池的方向发展,比如铝离子电池,并探索适用于此类电池的材料。五氧化二钒(VO)是用于嵌入多价离子的最具前景的主体材料之一。在此,我们报道了一种无粘结剂且自支撑的VO微米厚纸状电极材料的制备及其作为可充电铝离子电池阴极的应用。通过一种新颖的原位且自限性的铜迁移方法进入VO结构,阴极的电导率得到了显著提高。该过程利用了离子液体基电解质对铜的溶解,以及纳米结构VO中存在的两个不同的容纳位点,分别用于铝离子和迁移的铜。此外,先进的纳米结构阴极提供了高达约170 mAh g的比放电容量,并且铝的可逆嵌入超过500次循环,库仑效率高达近100%。无粘结剂的概念使得能量密度达到74 Wh kg,与迄今发表的基于VO的阴极相比,能量密度有所提高。我们的结果为未来设计和开发新型无粘结剂且自支撑的电极提供了有价值的见解,这种电极用于可充电多价金属离子电池,兼具高能量密度、循环稳定性、安全性和低成本。