Suppr超能文献

阿马尔菲:一个用于预测药物诱导性磷脂沉积症的机器学习平台。

AMALPHI: A Machine Learning Platform for Predicting Drug-Induced PhospholIpidosis.

作者信息

Lomuscio Maria Cristina, Abate Carmen, Alberga Domenico, Laghezza Antonio, Corriero Nicola, Colabufo Nicola Antonio, Saviano Michele, Delre Pietro, Mangiatordi Giuseppe Felice

机构信息

CNR─Institute of Crystallography, Via Amendola 122/o, 70126 Bari, Italy.

Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125 Bari, Italy.

出版信息

Mol Pharm. 2024 Feb 5;21(2):864-872. doi: 10.1021/acs.molpharmaceut.3c00964. Epub 2023 Dec 22.

Abstract

Drug-induced phospholipidosis (PLD) involves the accumulation of phospholipids in cells of multiple tissues, particularly within lysosomes, and it is associated with prolonged exposure to druglike compounds, predominantly cationic amphiphilic drugs (CADs). PLD affects a significant portion of drugs currently in development and has recently been proven to be responsible for confounding antiviral data during drug repurposing for SARS-CoV-2. In these scenarios, it has become crucial to identify potential safe drug candidates in advance and distinguish them from those that may lead to false in vitro antiviral activity. In this work, we developed a series of machine learning classifiers with the aim of predicting the PLD-inducing potential of drug candidates. The models were built on a high-quality chemical collection comprising curated small molecules extracted from ChEMBL v30. The most effective model, obtained using the balanced random forest algorithm, achieved high performance, including an AUC value computed in validation as high as 0.90. The model was made freely available through a user-friendly web platform named AMALPHI (https://www.ba.ic.cnr.it/softwareic/amalphiportal/), which can represent a valuable tool for medicinal chemists interested in conducting an early evaluation of PLD inducer potential.

摘要

药物性磷脂沉积症(PLD)涉及多种组织细胞中磷脂的积累,尤其是在溶酶体内,并且与长期接触类药物化合物有关,主要是阳离子两亲性药物(CADs)。PLD影响了目前正在研发的很大一部分药物,最近已被证明是在将药物重新用于治疗SARS-CoV-2期间混淆抗病毒数据的原因。在这些情况下,提前识别潜在的安全药物候选物并将它们与那些可能导致体外抗病毒活性假象的药物区分开来变得至关重要。在这项工作中,我们开发了一系列机器学习分类器,旨在预测药物候选物诱导PLD的潜力。这些模型基于一个高质量的化学数据集构建,该数据集包含从ChEMBL v30中提取的经过整理的小分子。使用平衡随机森林算法获得的最有效模型具有高性能,包括在验证中计算的AUC值高达0.90。该模型通过一个名为AMALPHI(https://www.ba.ic.cnr.it/softwareic/amalphiportal/)的用户友好型网络平台免费提供,这对于有兴趣对PLD诱导剂潜力进行早期评估的药物化学家来说可能是一个有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a8/10853961/50f43fb74ac4/mp3c00964_0001.jpg

相似文献

1
AMALPHI: A Machine Learning Platform for Predicting Drug-Induced PhospholIpidosis.
Mol Pharm. 2024 Feb 5;21(2):864-872. doi: 10.1021/acs.molpharmaceut.3c00964. Epub 2023 Dec 22.
2
4
Exploiting ensemble learning to improve prediction of phospholipidosis inducing potential.
J Theor Biol. 2019 Oct 21;479:37-47. doi: 10.1016/j.jtbi.2019.07.009. Epub 2019 Jul 13.
6
A machine learning and live-cell imaging tool kit uncovers small molecules induced phospholipidosis.
Cell Chem Biol. 2023 Dec 21;30(12):1634-1651.e6. doi: 10.1016/j.chembiol.2023.09.003. Epub 2023 Oct 4.
7
ALPACA: A machine Learning Platform for Affinity and selectivity profiling of CAnnabinoids receptors modulators.
Comput Biol Med. 2023 Sep;164:107314. doi: 10.1016/j.compbiomed.2023.107314. Epub 2023 Aug 7.
8
Hepatic cells derived from human skin progenitors show a typical phospholipidotic response upon exposure to amiodarone.
Toxicol Lett. 2018 Mar 1;284:184-194. doi: 10.1016/j.toxlet.2017.11.014. Epub 2017 Dec 15.
9
Predicting the Risk of Phospholipidosis with in Silico Models and an Image-Based in Vitro Screen.
Mol Pharm. 2017 Dec 4;14(12):4346-4352. doi: 10.1021/acs.molpharmaceut.7b00388. Epub 2017 Nov 8.
10
Identification of drugs inducing phospholipidosis by novel in vitro data.
ChemMedChem. 2012 Nov;7(11):1925-34. doi: 10.1002/cmdc.201200306. Epub 2012 Sep 3.

引用本文的文献

1
SIGMAP: an explainable artificial intelligence tool for SIGMA-1 receptor affinity prediction.
RSC Med Chem. 2024 Nov 8;16(2):835-848. doi: 10.1039/d4md00722k. eCollection 2025 Feb 19.

本文引用的文献

1
Drug-induced phospholipidosis is not correlated with the inhibition of SARS-CoV-2 - inhibition of SARS-CoV-2 is cell line-specific.
Front Cell Infect Microbiol. 2023 Aug 11;13:1100028. doi: 10.3389/fcimb.2023.1100028. eCollection 2023.
2
ALPACA: A machine Learning Platform for Affinity and selectivity profiling of CAnnabinoids receptors modulators.
Comput Biol Med. 2023 Sep;164:107314. doi: 10.1016/j.compbiomed.2023.107314. Epub 2023 Aug 7.
4
Ligand-based prediction of hERG-mediated cardiotoxicity based on the integration of different machine learning techniques.
Front Pharmacol. 2022 Sep 5;13:951083. doi: 10.3389/fphar.2022.951083. eCollection 2022.
5
DeLA-Drug: A Deep Learning Algorithm for Automated Design of Druglike Analogues.
J Chem Inf Model. 2022 Mar 28;62(6):1411-1424. doi: 10.1021/acs.jcim.2c00205. Epub 2022 Mar 16.
7
Defending Antiviral Cationic Amphiphilic Drugs That May Cause Drug-Induced Phospholipidosis.
J Chem Inf Model. 2021 Sep 27;61(9):4125-4130. doi: 10.1021/acs.jcim.1c00903. Epub 2021 Sep 13.
8
Drug-induced phospholipidosis confounds drug repurposing for SARS-CoV-2.
Science. 2021 Jul 30;373(6554):541-547. doi: 10.1126/science.abi4708. Epub 2021 Jun 22.
9
One molecular fingerprint to rule them all: drugs, biomolecules, and the metabolome.
J Cheminform. 2020 Jun 12;12(1):43. doi: 10.1186/s13321-020-00445-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验