Suppr超能文献

新型体外数据鉴定致磷脂沉积病药物。

Identification of drugs inducing phospholipidosis by novel in vitro data.

机构信息

Department for Psychiatry and Psychotherapy, University Hospital, Friedrich Alexander University Erlangen Nuremberg, Schwabachanlage 6, 91054 Erlangen (Germany); Computer Chemistry Center, Friedrich Alexander University Erlangen Nuremberg, Nägelsbachstr. 25, 91052 Erlangen (Germany).

出版信息

ChemMedChem. 2012 Nov;7(11):1925-34. doi: 10.1002/cmdc.201200306. Epub 2012 Sep 3.

Abstract

Drug-induced phospholipidosis (PLD) is a lysosomal storage disorder characterized by the accumulation of phospholipids within the lysosome. This adverse drug effect can occur in various tissues and is suspected to impact cellular viability. Therefore, it is important to test chemical compounds for their potential to induce PLD during the drug design process. PLD has been reported to be a side effect of many commonly used drugs, especially those with cationic amphiphilic properties. To predict drug-induced PLD in silico, we established a high-throughput cell-culture-based method to quantitatively determine the induction of PLD by chemical compounds. Using this assay, we tested 297 drug-like compounds at two different concentrations (2.5 μM and 5.0 μM). We were able to identify 28 previously unknown PLD-inducing agents. Furthermore, our experimental results enabled the development of a binary classification model to predict PLD-inducing agents based on their molecular properties. This random forest prediction system yields a bootstrapped validated accuracy of 86 %. PLD-inducing agents overlap with those that target similar biological processes; a high degree of concordance with PLD-inducing agents was identified for cationic amphiphilic compounds, small molecules that inhibit acid sphingomyelinase, compounds that cross the blood-brain barrier, and compounds that violate Lipinski's rule of five. Furthermore, we were able to show that PLD-inducing compounds applied in combination additively induce PLD.

摘要

药物诱导的磷脂病(PLD)是一种溶酶体贮积病,其特征是溶酶体内磷脂的积累。这种药物的不良反应可能发生在各种组织中,并怀疑会影响细胞活力。因此,在药物设计过程中测试化学化合物是否有诱导 PLD 的潜力非常重要。已有报道称,PLD 是许多常用药物的副作用,特别是具有阳离子两亲性的药物。为了在计算机中预测药物诱导的 PLD,我们建立了一种高通量基于细胞培养的方法,用于定量测定化学化合物诱导 PLD 的能力。使用该测定法,我们在两个不同浓度(2.5 μM 和 5.0 μM)下测试了 297 种类药性化合物。我们能够鉴定出 28 种以前未知的诱导 PLD 的试剂。此外,我们的实验结果使我们能够开发一种基于分子特性的二分类模型来预测诱导 PLD 的试剂。该随机森林预测系统的自举验证准确率为 86%。诱导 PLD 的试剂与那些靶向相似生物过程的试剂重叠;与阳离子两亲性化合物、抑制酸性鞘磷脂酶的小分子、能够穿透血脑屏障的化合物和违反 Lipinski 五规则的化合物高度一致。此外,我们能够表明,联合应用诱导 PLD 的化合物会以累加的方式诱导 PLD。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f4b/3533795/02b8c697947a/cmdc0007-1925-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验