Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey.
Electrical and Electronics Engineering Department, Bogazici University, Istanbul, Turkey.
Eur J Radiol. 2024 Jan;170:111257. doi: 10.1016/j.ejrad.2023.111257. Epub 2023 Dec 13.
Isocitrate dehydrogenase (IDH) and telomerase reverse transcriptase gene promoter (TERTp) mutations play crucial roles in glioma biology. Such genetic information is typically obtained invasively from excised tumor tissue; however, these mutations need to be identified preoperatively for better treatment planning. The relative cerebral blood volume (rCBV) information derived from dynamic susceptibility contrast MRI (DSC-MRI) has been demonstrated to correlate with tumor vascularity, functionality, and biology, and might provide some information about the genetic alterations in gliomas before surgery. Therefore, this study aims to predict IDH and TERTp mutational subgroups in gliomas using deep learning applied to rCBV images.
After the generation of rCBV images from DSC-MRI data, classical machine learning algorithms were applied to the features obtained from the segmented tumor volumes to classify IDH and TERTp mutation subgroups. Furthermore, pre-trained convolutional neural networks (CNNs) and CNNs enhanced with attention gates were trained using rCBV images or a combination of rCBV and anatomical images to classify the mutational subgroups.
The best accuracies obtained with classical machine learning algorithms were 83 %, 68 %, and 76 % for the identification of IDH mutational, TERTp mutational, and TERTp-only subgroups, respectively. On the other hand, the best-performing CNN model achieved 88 % accuracy (86 % sensitivity, 91 % specificity) for the IDH-mutational subgroups, 70 % accuracy (73 % sensitivity and 67 % specificity) for the TERTp-mutational subgroups, and 84 % accuracy (86 % sensitivity, 81 % specificity) for the TERTp-only subgroup using attention gates.
DSC-MRI can be utilized to noninvasively classify IDH- and TERTp-based molecular subgroups of gliomas, facilitating preoperative identification of these genetic alterations.
异柠檬酸脱氢酶(IDH)和端粒酶逆转录酶基因启动子(TERTp)突变在神经胶质瘤生物学中起着至关重要的作用。这些遗传信息通常是从切除的肿瘤组织中侵入性获得的;然而,这些突变需要在术前确定,以便更好地进行治疗计划。从动态对比磁共振成像(DSC-MRI)获得的相对脑血容量(rCBV)信息已被证明与肿瘤血管生成、功能和生物学相关,并且可能在手术前提供一些关于神经胶质瘤遗传改变的信息。因此,本研究旨在通过将深度学习应用于 rCBV 图像来预测神经胶质瘤中的 IDH 和 TERTp 突变亚组。
从 DSC-MRI 数据生成 rCBV 图像后,应用经典机器学习算法对从分割的肿瘤体积中获得的特征进行分类,以对 IDH 和 TERTp 突变亚组进行分类。此外,使用 rCBV 图像或 rCBV 与解剖图像的组合训练预先训练的卷积神经网络(CNN)和带有注意力门的 CNN 来对突变亚组进行分类。
使用经典机器学习算法获得的最佳准确性分别为 83%、68%和 76%,用于识别 IDH 突变、TERTp 突变和 TERTp 仅突变亚组。另一方面,表现最佳的 CNN 模型对 IDH 突变亚组的准确率为 88%(86%的敏感性,91%的特异性),对 TERTp 突变亚组的准确率为 70%(73%的敏感性和 67%的特异性),对仅 TERTp 亚组的准确率为 84%(86%的敏感性,81%的特异性)使用注意力门。
DSC-MRI 可用于非侵入性地对 IDH 和 TERTp 为基础的神经胶质瘤分子亚组进行分类,有助于术前识别这些遗传改变。