Hermawan Oktanius Richard, Hosono Takahiro, Yasumoto Jun, Yasumoto Ko, Song Ke-Han, Maruyama Rio, Iijima Mariko, Yasumoto-Hirose Mina, Takada Ryogo, Hijikawa Kento, Shinjo Ryuichi
Department of Earth and Environmental Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan.
Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan; International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan; Research Institute for Humanity and Nature, 457-4 Motoyama, Kamigamo, Kita-ku, Kyoto 603-8047, Japan.
Sci Total Environ. 2024 Feb 20;912:169457. doi: 10.1016/j.scitotenv.2023.169457. Epub 2023 Dec 20.
Denitrification crucially regulates the attenuation of groundwater nitrate and is unlikely to occur in a fast-flowing aquifer such as the Ryukyu limestone aquifer in southern Okinawa Island, Japan. However, evidences of denitrification have been observed in several wells within this region. This study analyzed environmental isotopes (δN and ẟO) to derive the rationale for denitrification at this site. Additionally, the presence of two subsurface dams in the study area may influence the processes involved in nitrate attenuation. Herein, we analyzed 150 groundwater samples collected spatially and seasonally to characterize the variations in the groundwater chemistry and stable isotopes during denitrification. The values of δN and δO displayed a progressive trend up to +59.7 ‰ and + 21 ‰, respectively, whereas the concentrations of NO-N decreased to 0.1 mg L. In several wells, the enrichment factors of δN ranged from -6.6 to -2.1, indicating rapid denitrification, and the δN to δO ratios varied from 1.3:1 to 2:1, confirming the occurrence of denitrification. Denitrification intensively proceeds under conditions of depleted dissolved oxygen concentrations (<2 mg L), sluggish groundwater flow with longer residence times, high concentrations of dissolved organic carbon (>1.2 mg L), and low groundwater levels during the dry season with precipitation rates of <100 mm per month (Jun-Sep). SF analysis indicated the exclusive occurrence of denitrification in specific wells with groundwater residence times exceeding 30 years. These wells are located in close proximity to the major NE-SW fault system in the Komesu area, where the hydraulic gradient was below 0.005. Detailed geological and lithological investigations based on borehole data revealed that subsurface dams did not cause denitrification while the major NE-SW fault system uplifted the impermeable basement rock of the Shimajiri Group, creating a lithological gap at an equivalent depth that ultimately formed a sluggish groundwater area, promoting denitrification.
反硝化作用对地下水中硝酸盐的衰减起着至关重要的调节作用,而在诸如日本冲绳岛南部的琉球石灰岩含水层这样的快速流动含水层中不太可能发生。然而,在该区域的几口井中已观察到反硝化作用的证据。本研究分析了环境同位素(δN和δO),以探究该地点发生反硝化作用的原因。此外,研究区域内两座地下坝的存在可能会影响硝酸盐衰减所涉及的过程。在此,我们分析了在空间和季节上采集的150个地下水样本,以表征反硝化作用期间地下水化学和稳定同位素的变化。δN和δO值分别呈现出逐渐上升的趋势,最高分别达到+59.7‰和+21‰,而NO-N浓度则降至0.1mg/L。在几口井中,δN的富集系数范围为-6.6至-2.1,表明反硝化作用迅速,且δN与δO的比率在1.3:1至2:1之间变化,证实了反硝化作用的发生。反硝化作用在溶解氧浓度耗尽(<2mg/L)、地下水流速缓慢且停留时间较长、溶解有机碳浓度较高(>1.2mg/L)以及旱季地下水位较低且月降水量<100mm(6月至9月)的条件下强烈进行。SF分析表明,在地下水停留时间超过30年的特定井中仅发生反硝化作用。这些井位于小目濑地区主要的东北-西南断层系统附近,那里的水力梯度低于0.005。基于钻孔数据的详细地质和岩性调查表明,地下坝并未导致反硝化作用,而主要的东北-西南断层系统使下地组的不透水基底岩石隆起,在等效深度处形成了一个岩性间隙,最终形成了一个地下水流速缓慢的区域,促进了反硝化作用。