Suppr超能文献

基于易感性、促发性和持续性(3P)模型的癌症相关疲劳的多维预测因素:一项系统综述

Multidimensional Predictors of Cancer-Related Fatigue Based on the Predisposing, Precipitating, and Perpetuating (3P) Model: A Systematic Review.

作者信息

Wang Yiming, Tian Lv, Liu Xia, Zhang Hao, Tang Yongchun, Zhang Hong, Nie Wenbo, Wang Lisheng

机构信息

School of Nursing, Jilin University, No. 965 Xinjiang Street, Changchun 130021, China.

Senior Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing 100071, China.

出版信息

Cancers (Basel). 2023 Dec 17;15(24):5879. doi: 10.3390/cancers15245879.

Abstract

Cancer-related fatigue (CRF) is a widespread symptom with high prevalence in cancer patients, seriously affecting their quality of life. In the context of precision care, constructing machine learning-based prediction models for early screening and assessment of CRF is beneficial to this situation. To further understand the predictors of CRF for model construction, we conducted a comprehensive search in PubMed, Web of Science, Embase, and Scopus databases, combining CRF with predictor-related terms. A total of 27 papers met the inclusion criteria. We evaluated the above studies into three subgroups following the predisposing, precipitating, and perpetuating (3P) factor model. (1) Predisposing factors-baseline fatigue, demographic characteristics, clinical characteristics, psychosocial traits and physical symptoms. (2) Precipitating factors-type and stage of chemotherapy, inflammatory factors, laboratory indicators and metabolic changes. (3) Perpetuating factors-a low level of physical activity and poorer nutritional status. Future research should prioritize large-scale prospective studies with emerging technologies to identify accurate predictors of CRF. The assessment and management of CRF should also focus on the above factors, especially the controllable precipitating factors, to improve the quality of life of cancer survivors.

摘要

癌症相关疲劳(CRF)是一种在癌症患者中普遍存在的症状,严重影响他们的生活质量。在精准医疗的背景下,构建基于机器学习的预测模型用于CRF的早期筛查和评估对这种情况有益。为了进一步了解用于模型构建的CRF预测因素,我们在PubMed、Web of Science、Embase和Scopus数据库中进行了全面检索,将CRF与预测因素相关术语相结合。共有27篇论文符合纳入标准。我们根据易患、促发和持续(3P)因素模型将上述研究分为三个亚组。(1)易患因素——基线疲劳、人口统计学特征、临床特征、心理社会特征和身体症状。(2)促发因素——化疗类型和阶段、炎症因子、实验室指标和代谢变化。(3)持续因素——身体活动水平低和营养状况较差。未来的研究应优先开展采用新兴技术的大规模前瞻性研究,以确定CRF的准确预测因素。CRF的评估和管理也应关注上述因素,尤其是可控的促发因素,以提高癌症幸存者的生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894d/10741552/437b028b5e26/cancers-15-05879-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验