Li Ni, Peng Manman, Wu Qiang
College of Information and Electronic Engineering, Hunan City University, Yiyang 413000, China.
College of Information and Engineer, Hunan University, Changsha 410082, China.
Entropy (Basel). 2023 Nov 30;25(12):1606. doi: 10.3390/e25121606.
In multiview data clustering, consistent or complementary information in the multiview data can achieve better clustering results. However, the high dimensions, lack of labeling, and redundancy of multiview data certainly affect the clustering effect, posing a challenge to multiview clustering. A clustering algorithm based on multiview feature selection clustering (MFSC), which combines similarity graph learning and unsupervised feature selection, is designed in this study. During the MFSC implementation, local manifold regularization is integrated into similarity graph learning, with the clustering label of similarity graph learning as the standard for unsupervised feature selection. MFSC can retain the characteristics of the clustering label on the premise of maintaining the manifold structure of multiview data. The algorithm is systematically evaluated using benchmark multiview and simulated data. The clustering experiment results prove that the MFSC algorithm is more effective than the traditional algorithm.
在多视图数据聚类中,多视图数据中的一致或互补信息能够实现更好的聚类结果。然而,多视图数据的高维度、缺乏标注以及冗余性必然会影响聚类效果,给多视图聚类带来挑战。本研究设计了一种基于多视图特征选择聚类(MFSC)的聚类算法,该算法结合了相似性图学习和无监督特征选择。在MFSC实现过程中,将局部流形正则化集成到相似性图学习中,以相似性图学习的聚类标签作为无监督特征选择的标准。MFSC能够在保持多视图数据流形结构的前提下保留聚类标签的特征。使用基准多视图和模拟数据对该算法进行了系统评估。聚类实验结果证明,MFSC算法比传统算法更有效。