Suppr超能文献

时间序列数据的标度指数:一种机器学习方法。

Scaling Exponents of Time Series Data: A Machine Learning Approach.

作者信息

Raubitzek Sebastian, Corpaci Luiza, Hofer Rebecca, Mallinger Kevin

机构信息

Information and Software Engineering Group, TU Wien, Favoritenstrasse 9-11/194, 1040 Vienna, Austria.

SBA Research gGmbh, Floragasse 7, 1040 Vienna, Austria.

出版信息

Entropy (Basel). 2023 Dec 18;25(12):1671. doi: 10.3390/e25121671.

Abstract

In this study, we present a novel approach to estimating the Hurst exponent of time series data using a variety of machine learning algorithms. The Hurst exponent is a crucial parameter in characterizing long-range dependence in time series, and traditional methods such as Rescaled Range (R/S) analysis and Detrended Fluctuation Analysis (DFA) have been widely used for its estimation. However, these methods have certain limitations, which we sought to address by modifying the R/S approach to distinguish between fractional Lévy and fractional Brownian motion, and by demonstrating the inadequacy of DFA and similar methods for data that resembles fractional Lévy motion. This inspired us to utilize machine learning techniques to improve the estimation process. In an unprecedented step, we train various machine learning models, including LightGBM, MLP, and AdaBoost, on synthetic data generated from random walks, namely fractional Brownian motion and fractional Lévy motion, where the ground truth Hurst exponent is known. This means that we can initialize and create these stochastic processes with a scaling Hurst/scaling exponent, which is then used as the ground truth for training. Furthermore, we perform the continuous estimation of the scaling exponent directly from the time series, without resorting to the calculation of the power spectrum or other sophisticated preprocessing steps, as done in past approaches. Our experiments reveal that the machine learning-based estimators outperform traditional R/S analysis and DFA methods in estimating the Hurst exponent, particularly for data akin to fractional Lévy motion. Validating our approach on real-world financial data, we observe a divergence between the estimated Hurst/scaling exponents and results reported in the literature. Nevertheless, the confirmation provided by known ground truths reinforces the superiority of our approach in terms of accuracy. This work highlights the potential of machine learning algorithms for accurately estimating the Hurst exponent, paving new paths for time series analysis. By marrying traditional finance methods with the capabilities of machine learning, our study provides a novel contribution towards the future of time series data analysis.

摘要

在本研究中,我们提出了一种新颖的方法,使用多种机器学习算法来估计时间序列数据的赫斯特指数。赫斯特指数是表征时间序列中长期相关性的关键参数,传统方法如重标极差(R/S)分析和去趋势波动分析(DFA)已被广泛用于其估计。然而,这些方法存在一定局限性,我们试图通过修改R/S方法以区分分数阶 Lévy 运动和分数阶布朗运动来解决这些局限性,并通过证明DFA及类似方法对于类似分数阶 Lévy 运动的数据并不适用。这促使我们利用机器学习技术来改进估计过程。在一个史无前例的步骤中,我们在由随机游走生成的合成数据(即分数阶布朗运动和分数阶 Lévy 运动)上训练各种机器学习模型,包括LightGBM、MLP和AdaBoost,其中真实的赫斯特指数是已知的。这意味着我们可以用一个缩放的赫斯特/缩放指数初始化并创建这些随机过程,然后将其用作训练的真实值。此外,我们直接从时间序列中对缩放指数进行连续估计,而无需像过去的方法那样计算功率谱或进行其他复杂的预处理步骤。我们的实验表明,基于机器学习的估计器在估计赫斯特指数方面优于传统的R/S分析和DFA方法,特别是对于类似于分数阶 Lévy 运动的数据。在真实世界的金融数据上验证我们的方法时,我们观察到估计的赫斯特/缩放指数与文献中报道的结果存在差异。然而,已知真实值提供的验证强化了我们方法在准确性方面的优越性。这项工作突出了机器学习算法在准确估计赫斯特指数方面的潜力,为时间序列分析开辟了新路径。通过将传统金融方法与机器学习能力相结合,我们的研究为时间序列数据分析的未来做出了新颖贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f42d/10742462/444f5ddf99d7/entropy-25-01671-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验