Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA.
Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA.
Int J Mol Sci. 2023 Dec 12;24(24):17401. doi: 10.3390/ijms242417401.
Determining neuroendocrine tumor (NET) primary sites is pivotal for patient care as pancreatic NETs (pNETs) and small bowel NETs (sbNETs) have distinct treatment approaches. The diagnostic power and prioritization of fluorescence in situ hybridization (FISH) assay biomarkers for establishing primary sites has not been thoroughly investigated using machine learning (ML) techniques. We trained ML models on FISH assay metrics from 85 sbNET and 59 pNET samples for primary site prediction. Exploring multiple methods for imputing missing data, the impute-by-median dataset coupled with a support vector machine model achieved the highest classification accuracy of 93.1% on a held-out test set, with the top importance variables originating from the FISH probe. Due to the greater interpretability of decision tree (DT) models, we fit DT models to ten dataset splits, achieving optimal performance with k-nearest neighbor (KNN) imputed data and a transformation to single categorical biomarker probe variables, with a mean accuracy of 81.4%, on held-out test sets. and variables ranked as top-performing features in 9 of 10 DT models and the full dataset model. These findings offer probabilistic guidance for FISH testing, emphasizing the prioritization of the , , and FISH probes in diagnosing NET primary sites.
确定神经内分泌肿瘤(NET)的原发部位对于患者的治疗至关重要,因为胰腺神经内分泌肿瘤(pNET)和小肠神经内分泌肿瘤(sbNET)有不同的治疗方法。使用机器学习(ML)技术,尚未深入研究荧光原位杂交(FISH)检测生物标志物在确定原发部位方面的诊断能力和优先级。我们使用 85 个 sbNET 和 59 个 pNET 样本的 FISH 检测指标对 ML 模型进行了训练,用于预测原发部位。通过探索多种方法来填补缺失数据,在测试集上实现了最高分类准确率 93.1%的是中位数填补数据集与支持向量机模型的组合,最重要的变量来源于 FISH 探针。由于决策树(DT)模型的可解释性更强,我们对十个数据集进行了 DT 模型拟合,在 KNN 填补数据和转换为单一分类生物标志物探针变量的情况下,最优性能为 81.4%,在测试集上的平均准确率为 93.1%。在 10 个 DT 模型中的 9 个和全数据集模型中, 和 变量被评为表现最佳的特征。这些发现为 FISH 检测提供了概率指导,强调了在诊断 NET 原发部位时应优先考虑 、 和 FISH 探针。