Suppr超能文献

相似文献

3
Accelerated and Interpretable Oblique Random Survival Forests.
J Comput Graph Stat. 2024;33(1):192-207. doi: 10.1080/10618600.2023.2231048.
4
A comparative study of forest methods for time-to-event data: variable selection and predictive performance.
BMC Med Res Methodol. 2021 Sep 25;21(1):193. doi: 10.1186/s12874-021-01386-8.
6
Helicopter Simulator Performance Prediction Using the Random Forest Method.
Aerosp Med Hum Perform. 2018 Nov 1;89(11):967-975. doi: 10.3357/AMHP.5086.2018.
7
Study becomes insight: Ecological learning from machine learning.
Methods Ecol Evol. 2021 Nov;12(11):2117-2128. doi: 10.1111/2041-210X.13686. Epub 2021 Aug 6.
8
Permutation importance: a corrected feature importance measure.
Bioinformatics. 2010 May 15;26(10):1340-7. doi: 10.1093/bioinformatics/btq134. Epub 2010 Apr 12.
9
Unbiased split variable selection for random survival forests using maximally selected rank statistics.
Stat Med. 2017 Apr 15;36(8):1272-1284. doi: 10.1002/sim.7212. Epub 2017 Jan 15.

引用本文的文献

1
Using preprocessed datasets to construct and interpret multiclass identification models.
Front Plant Sci. 2025 Aug 20;16:1597673. doi: 10.3389/fpls.2025.1597673. eCollection 2025.
2
Virtual reality navigation for the early detection of Alzheimer's disease.
Front Aging Neurosci. 2025 Aug 20;17:1571429. doi: 10.3389/fnagi.2025.1571429. eCollection 2025.
3
AI-Driven Tacrolimus Dosing in Transplant Care: Cohort Study.
JMIR AI. 2025 Sep 2;4:e67302. doi: 10.2196/67302.
4
Disentangling soybean GxE effects in an integrated genomic prediction and machine learning-GWAS workflow.
Plant Methods. 2025 Aug 25;21(1):119. doi: 10.1186/s13007-025-01434-0.
6
Applications of interpretable deep learning in neuroimaging: A comprehensive review.
Imaging Neurosci (Camb). 2024 Jul 12;2. doi: 10.1162/imag_a_00214. eCollection 2024.
8
A natural language processing approach to support biomedical data harmonization: Leveraging large language models.
PLoS One. 2025 Jul 24;20(7):e0328262. doi: 10.1371/journal.pone.0328262. eCollection 2025.
9
JASMINE: A powerful representation learning method for enhanced analysis of incomplete multi-omics data.
bioRxiv. 2025 Jun 22:2025.06.16.659949. doi: 10.1101/2025.06.16.659949.

本文引用的文献

1
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.
Nat Mach Intell. 2019 May;1(5):206-215. doi: 10.1038/s42256-019-0048-x. Epub 2019 May 13.
2
Nonparametric variable importance assessment using machine learning techniques.
Biometrics. 2021 Mar;77(1):9-22. doi: 10.1111/biom.13392. Epub 2020 Dec 8.
3
Fair Inference on Outcomes.
Proc AAAI Conf Artif Intell. 2018 Feb;2018:1931-1940. Epub 2018 Apr 25.
6
Reinforcement Learning Trees.
J Am Stat Assoc. 2015;110(512):1770-1784. doi: 10.1080/01621459.2015.1036994. Epub 2015 Apr 16.
7
An experimental study of the intrinsic stability of random forest variable importance measures.
BMC Bioinformatics. 2016 Feb 3;17:60. doi: 10.1186/s12859-016-0900-5.
8
Risk Assessment in Criminal Sentencing.
Annu Rev Clin Psychol. 2016;12:489-513. doi: 10.1146/annurev-clinpsy-021815-092945. Epub 2015 Dec 11.
9
Variable importance and prediction methods for longitudinal problems with missing variables.
PLoS One. 2015 Mar 27;10(3):e0120031. doi: 10.1371/journal.pone.0120031. eCollection 2015.
10
Algorithms for Discovery of Multiple Markov Boundaries.
J Mach Learn Res. 2013 Feb;14:499-566.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验