Suppr超能文献

一种基于多维子轨迹相似度的隐私保护轨迹发布方法

A Privacy-Preserving Trajectory Publishing Method Based on Multi-Dimensional Sub-Trajectory Similarities.

作者信息

Shen Hua, Wang Yu, Zhang Mingwu

机构信息

School of Computer Science, Hubei University of Technology, Wuhan 430068, China.

出版信息

Sensors (Basel). 2023 Dec 6;23(24):9652. doi: 10.3390/s23249652.

Abstract

With the popularity of location services and the widespread use of trajectory data, trajectory privacy protection has become a popular research area. -anonymity technology is a common method for achieving privacy-preserved trajectory publishing. When constructing virtual trajectories, most existing trajectory -anonymity methods just consider point similarity, which results in a large dummy trajectory space. Suppose there are similar point sets, each consisting of points. The size of the space is then mn. Furthermore, to choose suitable - 1 dummy trajectories for a given real trajectory, these methods need to evaluate the similarity between each trajectory in the space and the real trajectory, leading to a large performance overhead. To address these challenges, this paper proposes a -anonymity trajectory privacy protection method based on the similarity of sub-trajectories. This method not only considers the multidimensional similarity of points, but also synthetically considers the area between the historic sub-trajectories and the real sub-trajectories to more fully describe the similarity between sub-trajectories. By quantifying the area enclosed by sub-trajectories, we can more accurately capture the spatial relationship between trajectories. Finally, our approach generates k-1 dummy trajectories that are indistinguishable from real trajectories, effectively achieving -anonymity for a given trajectory. Furthermore, our proposed method utilizes real historic sub-trajectories to generate dummy trajectories, making them more authentic and providing better privacy protection for real trajectories. In comparison to other frequently employed trajectory privacy protection methods, our method has a better privacy protection effect, higher data quality, and better performance.

摘要

随着定位服务的普及和轨迹数据的广泛使用,轨迹隐私保护已成为一个热门的研究领域。k匿名技术是实现隐私保护轨迹发布的一种常用方法。在构建虚拟轨迹时,大多数现有的轨迹k匿名方法只考虑点的相似性,这导致了较大的虚拟轨迹空间。假设有m个相似点集,每个点集由n个点组成。那么空间大小就是mn。此外,为给定的真实轨迹选择合适的k - 1个虚拟轨迹时,这些方法需要评估空间中每个轨迹与真实轨迹之间的相似性,从而导致较大的性能开销。为了应对这些挑战,本文提出了一种基于子轨迹相似性的k匿名轨迹隐私保护方法。该方法不仅考虑了点的多维相似性,还综合考虑了历史子轨迹与真实子轨迹之间的面积,以更全面地描述子轨迹之间的相似性。通过量化子轨迹所围成的面积,我们可以更准确地捕捉轨迹之间的空间关系。最后,我们的方法生成k - 1个与真实轨迹无法区分的虚拟轨迹,有效地实现了给定轨迹的k匿名。此外,我们提出的方法利用真实的历史子轨迹来生成虚拟轨迹,使其更真实,并为真实轨迹提供更好的隐私保护。与其他常用的轨迹隐私保护方法相比,我们的方法具有更好的隐私保护效果、更高的数据质量和更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd89/10747896/f9cdc411c6cb/sensors-23-09652-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验