Suppr超能文献

一种基于区块链和阈值密码学的位置隐私保护方法。

A location privacy protection method based on blockchain and threshold cryptography.

作者信息

Hu Zhaowei, Jin Ruifang, Quan HangYi, Ni ShiYun, He Peng

机构信息

School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China.

College of Computer, Jilin Normal University, Siping, Jilin, China.

出版信息

PLoS One. 2025 Jun 4;20(6):e0324551. doi: 10.1371/journal.pone.0324551. eCollection 2025.

Abstract

To address privacy leakage risks arising from low collaborative user engagement, third-party trust deficits, and insufficient collaboration timeliness in location-based services (LBS), this paper proposes a dual-protection framework integrating blockchain technology and threshold cryptography for safeguarding location privacy. The framework employs asymmetric encryption with Shamir's (t, n) secret sharing to encrypt user queries, distributing decryption key fragments to collaborative users while generating n anonymous service requests through location generalization strategies. A temporary private blockchain constructed using smart contracts ensures confidential data transmission, supported by a dynamic privacy parameter configuration system based on Byzantine fault tolerance. The framework implements a priority-response consensus mechanism through Token-based equity proof-of-stake, prioritizing service for users with higher Token values. To mitigate privacy breaches caused by unresponsive collaborators, a competitive incentive mechanism ensures timely information submission. Through ciphertext fragment verification algorithms and Lagrange interpolation-based key reconstruction, the framework enables secure query decryption and service matching in untrusted third-party environments, guaranteeing information security, integrity, and non-repudiation. Experimental validation using real-world datasets confirms the framework's feasibility and operational effectiveness.

摘要

为解决基于位置服务(LBS)中因用户协作参与度低、第三方信任赤字以及协作及时性不足而产生的隐私泄露风险,本文提出了一种集成区块链技术和阈值密码学的双重保护框架,以保护位置隐私。该框架采用带有 Shamir(t, n)秘密共享的非对称加密来加密用户查询,将解密密钥片段分发给协作用户,同时通过位置泛化策略生成 n 个匿名服务请求。使用智能合约构建的临时私有区块链确保机密数据传输,并由基于拜占庭容错的动态隐私参数配置系统提供支持。该框架通过基于 Token 的权益证明实现优先级响应共识机制,为具有更高 Token 值的用户提供优先服务。为减轻因协作方无响应导致的隐私泄露,竞争激励机制确保及时提交信息。通过密文片段验证算法和基于拉格朗日插值的密钥重建,该框架能够在不可信的第三方环境中实现安全的查询解密和服务匹配,保证信息安全、完整性和不可否认性。使用真实世界数据集进行的实验验证证实了该框架的可行性和运行有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23e3/12136415/903da3071afc/pone.0324551.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验