Suppr超能文献

姿势姿态:用于半监督单目 3D 人体姿态估计的优化姿势分析。

PosturePose: Optimized Posture Analysis for Semi-Supervised Monocular 3D Human Pose Estimation.

机构信息

Visual Computing Lab, Illinois Institute of Technology, Chicago, IL 60616, USA.

出版信息

Sensors (Basel). 2023 Dec 11;23(24):9749. doi: 10.3390/s23249749.

Abstract

One motivation for studying semi-supervised techniques for human pose estimation is to compensate for the lack of variety in curated 3D human pose datasets by combining labeled 3D pose data with readily available unlabeled video data-effectively, leveraging the annotations of the former and the rich variety of the latter to train more robust pose estimators. In this paper, we propose a novel, fully differentiable posture consistency loss that is unaffected by camera orientation and improves monocular human pose estimators trained with limited labeled 3D pose data. Our semi-supervised monocular 3D pose framework combines biomechanical pose regularization with a multi-view posture (and pose) consistency objective function. We show that posture optimization was effective at decreasing pose estimation errors when applied to a 2D-3D lifting network (VPose3D) and two well-studied datasets (H36M and 3DHP). Specifically, the proposed semi-supervised framework with multi-view posture and pose loss lowered the mean per-joint position error (MPJPE) of leading semi-supervised methods by up to 15% (-7.6 mm) when camera parameters of unlabeled poses were provided. Without camera parameters, our semi-supervised framework with posture loss improved semi-supervised state-of-the-art methods by 17% (-15.6 mm decrease in MPJPE). Overall, our pose models compete favorably with other high-performing pose models trained under similar conditions with limited labeled data.

摘要

研究半监督人体姿态估计技术的一个动机是,通过将标记的 3D 人体姿态数据与易于获得的未标记视频数据相结合,从而弥补精心制作的 3D 人体姿态数据集的多样性不足——实际上是利用前者的注释和后者的丰富多样性来训练更强大的姿态估计器。在本文中,我们提出了一种新颖的、完全可微分的姿态一致性损失,该损失不受相机方向的影响,并提高了使用有限的标记 3D 姿态数据训练的单目人体姿态估计器的性能。我们的半监督单目 3D 姿态框架将生物力学姿态正则化与多视角姿态(和姿态)一致性目标函数相结合。我们表明,当应用于二维到三维提升网络(VPose3D)和两个经过充分研究的数据集(H36M 和 3DHP)时,姿态优化在降低姿态估计误差方面非常有效。具体来说,当提供未标记姿态的相机参数时,我们提出的具有多视角姿态和姿态损失的半监督框架将领先的半监督方法的平均每关节位置误差(MPJPE)降低了多达 15%(-7.6 毫米)。在没有相机参数的情况下,我们提出的具有姿态损失的半监督框架将半监督的最新方法提高了 17%(MPJPE 降低了 15.6 毫米)。总体而言,我们的姿态模型在具有类似条件和有限标记数据的情况下,与其他高性能姿态模型的表现相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74ae/10747870/9e2cd539aec8/sensors-23-09749-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验