Noussaiba Lazar Amat Ellah, Abdelaziz Ferdjouni
Automatics Department, Saad Dahleb University, Soumaa, Blida 09000, Algeria.
ISA Trans. 2024 Feb;145:373-386. doi: 10.1016/j.isatra.2023.11.020. Epub 2023 Nov 16.
Induction motors (IMs) are extensively used in industrial sector. This kind of machine is subjected to several stresses that could interrupt their normal operation. An excessive stress can generate some symptoms before the IM fall in failure situation. Therefore, incipient detection of these symptoms permits the shutdown of IMs in order to avoid total destruction. Fault detection is then the main objective of diagnosis systems. Stator inter-turn short-circuits (SITSC) constitutes an important amount of cause of IM breakdown. However; unbalance supply voltage (USV) is one of the advantageous factors that affect IMs operation. Thus, in order to avoid false alarm induced by USV, the diagnosis system must make difference between USV and SITSC faults. This paper presents an efficient approach to estimate SITSC percentage and detect USV occurrence using Artificial Intelligent (AI) tool. Artificial neuronal network (ANN) plays the key-role of the proposed diagnosis system. A fault Classifier of SITSC and USV is carried out using multi-layer perceptron neuronal network (MLP-NN). The training, testing and validation phases of MLP-NN need the dataset creation. The required data is obtained from both simulated mathematical model of IM and laboratory test-bed. The reached results show the sensitivity and the well-functioning of the proposed diagnosis system.
感应电动机(IM)在工业领域得到广泛应用。这种电机承受着多种可能中断其正常运行的应力。过大的应力会在电机出现故障之前产生一些症状。因此,早期检测这些症状可以使感应电动机停机,以避免彻底损坏。故障检测是诊断系统的主要目标。定子匝间短路(SITSC)是感应电动机故障的一个重要原因。然而,不平衡电源电压(USV)是影响感应电动机运行的一个不利因素。因此,为了避免由不平衡电源电压引起的误报,诊断系统必须区分不平衡电源电压故障和定子匝间短路故障。本文提出了一种使用人工智能(AI)工具来估计定子匝间短路百分比并检测不平衡电源电压出现情况的有效方法。人工神经网络(ANN)在所提出的诊断系统中起着关键作用。使用多层感知器神经网络(MLP-NN)对定子匝间短路和不平衡电源电压进行故障分类。MLP-NN的训练、测试和验证阶段需要创建数据集。所需数据来自感应电动机的模拟数学模型和实验室试验台。所得到的结果表明了所提出的诊断系统的灵敏度和良好运行情况。