Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Robarts Research Institute, Western University, London, Ontario, Canada.
Indraprastha Institute of Information Technology, New Delhi, India.
Prog Neurobiol. 2024 Feb;233:102563. doi: 10.1016/j.pneurobio.2023.102563. Epub 2023 Dec 23.
Selective attention allows the brain to efficiently process the image projected onto the retina, selectively focusing neural processing resources on behaviorally relevant visual information. While previous studies have documented the crucial role of the action potential rate of single neurons in relaying such information, little is known about how the activity of single neurons relative to their neighboring network contributes to the efficient representation of attended stimuli and transmission of this information to downstream areas. Here, we show in the dorsal visual pathway of monkeys (medial superior temporal area) that neurons fire spikes preferentially at a specific phase of the ongoing population beta (∼20 Hz) oscillations of the surrounding local network. This preferred spiking phase shifts towards a later phase when monkeys selectively attend towards (rather than away from) the receptive field of the neuron. This shift of the locking phase is positively correlated with the speed at which animals report a visual change. Furthermore, our computational modeling suggests that neural networks can manipulate the preferred phase of coupling by imposing differential synaptic delays on postsynaptic potentials. This distinction between the locking phase of neurons activated by the spatially attended stimulus vs. that of neurons activated by the unattended stimulus, may enable the neural system to discriminate relevant from irrelevant sensory inputs and consequently filter out distracting stimuli information by aligning the spikes which convey relevant/irrelevant information to distinct phases linked to periods of better/worse perceptual sensitivity for higher cortices. This strategy may be used to reserve the narrow windows of highest perceptual efficacy to the processing of the most behaviorally relevant information, ensuring highly efficient responses to attended sensory events.
选择性注意使大脑能够有效地处理投射到视网膜上的图像,有选择地将神经处理资源集中在与行为相关的视觉信息上。虽然以前的研究已经记录了单个神经元动作电位率在传递这种信息方面的关键作用,但对于单个神经元的活动相对于其邻近网络如何有助于被注意刺激的有效表示以及将这种信息传递到下游区域,知之甚少。在这里,我们在猴子的背侧视觉通路(中颞上区)中表明,神经元优先在周围局部网络中持续的群体β(约 20 Hz)振荡的特定相位发射尖峰。当猴子有选择地关注(而不是远离)神经元的感受野时,这种优先发射相位会向较晚的相位转移。这种锁定相位的转移与动物报告视觉变化的速度呈正相关。此外,我们的计算模型表明,神经网络可以通过对突触后电位施加差分突触延迟来操纵耦合的优先相位。由空间注意刺激激活的神经元的锁定相位与由未注意刺激激活的神经元的锁定相位之间的这种区别,可能使神经系统能够通过将传递相关/不相关信息的尖峰对齐到与更高皮质的更好/更差感知敏感性相关的不同相位来区分相关和不相关的感觉输入,从而过滤掉分心的刺激信息。这种策略可用于将最高感知功效的狭窄窗口保留给最具行为相关性的信息的处理,确保对注意感官事件的高度有效响应。