D'Andria Matteo, Krumeich Frank, Yao Zhangyi, Wang Feng Ryan, Güntner Andreas T
Human-centered Sensing Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, CH-8092, Switzerland.
Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zurich, Zurich, CH-8093, Switzerland.
Adv Sci (Weinh). 2024 Mar;11(10):e2308224. doi: 10.1002/advs.202308224. Epub 2023 Dec 24.
Designing reactive surface clusters at the nanoscale on metal-oxide supports enables selective molecular interactions in low-temperature catalysis and chemical sensing. Yet, finding effective material combinations and identifying the reactive site remains challenging and an obstacle for rational catalyst/sensor design. Here, the low-temperature oxidation of formaldehyde with CuO clusters on Co O nanoparticles is demonstrated yielding an excellent sensor for this critical air pollutant. When fabricated by flame-aerosol technology, such CuO clusters are finely dispersed, while some Cu ions are incorporated into the Co O lattice enhancing thermal stability. Importantly, infrared spectroscopy of adsorbed CO, near edge X-ray absorption fine structure spectroscopy and temperature-programmed reduction in H identified Cu and Cu species in these clusters as active sites. Remarkably, the Cu surface concentration correlated with the apparent activation energy of formaldehyde oxidation (Spearman's coefficient ρ = 0.89) and sensor response (0.96), rendering it a performance descriptor. At optimal composition, such sensors detected even the lowest formaldehyde levels of 3 parts-per-billion (ppb) at 75°C, superior to state-of-the-art sensors. Also, selectivity to other aldehydes, ketones, alcohols, and inorganic compounds, robustness to humidity and stable performance over 4 weeks are achieved, rendering such sensors promising as gas detectors in health monitoring, air and food quality control.
在金属氧化物载体上设计纳米级的反应性表面簇能够在低温催化和化学传感中实现选择性分子相互作用。然而,找到有效的材料组合并确定反应位点仍然具有挑战性,这是合理设计催化剂/传感器的一个障碍。在此,展示了用CoO纳米颗粒上的CuO簇对甲醛进行低温氧化,从而产生一种针对这种关键空气污染物的优异传感器。当通过火焰气溶胶技术制备时,此类CuO簇分散良好,同时一些Cu离子融入CoO晶格中,提高了热稳定性。重要的是,吸附CO的红外光谱、近边X射线吸收精细结构光谱以及H2程序升温还原确定了这些簇中的Cu和Cu物种为活性位点。值得注意的是,Cu表面浓度与甲醛氧化的表观活化能(斯皮尔曼系数ρ = 0.89)和传感器响应(0.96)相关,使其成为一个性能描述符。在最佳组成下,此类传感器在75°C时甚至能检测到低至十亿分之三(ppb)的甲醛水平,优于现有技术的传感器。此外,还实现了对其他醛、酮、醇和无机化合物的选择性、对湿度的耐受性以及4周以上的稳定性能,使得此类传感器有望成为健康监测、空气和食品质量控制中的气体探测器。