Suppr超能文献

缺陷调控负载于缺陷二氧化钛催化剂上的铜用于CO还原时的强金属-载体相互作用

Defects Tune the Strong Metal-Support Interactions in Copper Supported on Defected Titanium Dioxide Catalysts for CO Reduction.

作者信息

Belgamwar Rajesh, Verma Rishi, Das Tisita, Chakraborty Sudip, Sarawade Pradip, Polshettiwar Vivek

机构信息

Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.

National Centre for Nanoscience and Nanotechnology and Department of Physics, University of Mumbai, Mumbai 400098, India.

出版信息

J Am Chem Soc. 2023 Apr 5. doi: 10.1021/jacs.3c01336.

Abstract

A highly active and stable Cu-based catalyst for CO to CO conversion was demonstrated by creating a strong metal-support interaction (SMSI) between Cu active sites and the TiO-coated dendritic fibrous nano-silica (DFNS/TiO) support. The DFNS/TiO-Cu10 catalyst showed excellent catalytic performance with a CO productivity of 5350 mmol g h (i.e., 53,506 mmol g h), surpassing that of almost all copper-based thermal catalysts, with 99.8% selectivity toward CO. Even after 200 h of reaction, the catalyst remained active. Moderate initial agglomeration and high dispersion of nanoparticles (NPs) due to SMSI made the catalysts stable. Electron energy loss spectroscopy confirmed the strong interactions between copper NPs and the TiO surface, supported by in situ diffuse reflectance infrared Fourier transform spectroscopy and X-ray photoelectron spectroscopy. The H-temperature programmed reduction (TPR) study showed α, β, and γ H-TPR signals, further confirming the presence of SMSI between Cu and TiO. In situ Raman and UV-vis diffuse reflectance spectroscopy studies provided insights into the role of oxygen vacancies and Ti centers, which were produced by hydrogen, then consumed by CO, and then again regenerated by hydrogen. These continuous defect generation-regeneration processes during the progress of the reaction allowed long-term high catalytic activity and stability. The in situ studies and oxygen storage complete capacity indicated the key role of oxygen vacancies during catalysis. The in situ time-resolved Fourier transform infrared study provided an understanding of the formation of various reaction intermediates and their conversion to products with reaction time. Based on these observations, we have proposed a CO reduction mechanism, which follows a redox pathway assisted by hydrogen.

摘要

通过在铜活性位点与二氧化钛包覆的树枝状纤维纳米二氧化硅(DFNS/TiO)载体之间建立强金属-载体相互作用(SMSI),展示了一种用于CO到CO转化的高活性和稳定的铜基催化剂。DFNS/TiO-Cu10催化剂表现出优异的催化性能,CO生产率为5350 mmol g h(即53,506 mmol g h),超过了几乎所有铜基热催化剂,对CO的选择性为99.8%。即使在反应200小时后,催化剂仍保持活性。由于SMSI导致的适度初始团聚和纳米颗粒(NPs)的高分散性使催化剂稳定。电子能量损失光谱证实了铜NPs与TiO表面之间的强相互作用,原位漫反射红外傅里叶变换光谱和X射线光电子能谱也支持这一点。H程序升温还原(TPR)研究显示了α、β和γ H-TPR信号,进一步证实了Cu和TiO之间存在SMSI。原位拉曼光谱和紫外可见漫反射光谱研究深入了解了氧空位和Ti中心的作用,它们由氢气产生,然后被CO消耗,接着又被氢气再生。反应过程中这些连续的缺陷产生-再生过程使得催化剂具有长期的高催化活性和稳定性。原位研究和储氧完全容量表明了氧空位在催化过程中的关键作用。原位时间分辨傅里叶变换红外研究有助于理解各种反应中间体的形成及其随反应时间向产物的转化。基于这些观察结果,我们提出了一种CO还原机理,该机理遵循氢辅助的氧化还原途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验