Department of Bioengineering, UC San Diego, La Jolla, CA, USA.
Department of Pediatrics, UC San Diego, La Jolla, CA, USA.
Metab Eng. 2024 Jan;81:273-285. doi: 10.1016/j.ymben.2023.12.006. Epub 2023 Dec 23.
Understanding protein secretion has considerable importance in biotechnology and important implications in a broad range of normal and pathological conditions including development, immunology, and tissue function. While great progress has been made in studying individual proteins in the secretory pathway, measuring and quantifying mechanistic changes in the pathway's activity remains challenging due to the complexity of the biomolecular systems involved. Systems biology has begun to address this issue with the development of algorithmic tools for analyzing biological pathways; however most of these tools remain accessible only to experts in systems biology with extensive computational experience. Here, we expand upon the user-friendly CellFie tool which quantifies metabolic activity from omic data to include secretory pathway functions, allowing any scientist to infer properties of protein secretion from omic data. We demonstrate how the secretory expansion of CellFie (secCellFie) can help predict metabolic and secretory functions across diverse immune cells, hepatokine secretion in a cell model of NAFLD, and antibody production in Chinese Hamster Ovary cells.
理解蛋白质分泌在生物技术中有重要意义,对包括发育、免疫学和组织功能在内的广泛的正常和病理条件都有重要影响。虽然在研究分泌途径中的单个蛋白质方面已经取得了很大进展,但由于所涉及的生物分子系统的复杂性,测量和量化途径活性的机制变化仍然具有挑战性。系统生物学已经开始通过开发用于分析生物途径的算法工具来解决这个问题;然而,大多数这些工具仍然只对具有丰富计算经验的系统生物学专家开放。在这里,我们扩展了用户友好的 CellFie 工具,该工具可从组学数据中量化代谢活性,包括分泌途径功能,使任何科学家都可以从组学数据中推断蛋白质分泌的特性。我们展示了 secCellFie(CellFie 的分泌扩展)如何帮助预测不同免疫细胞的代谢和分泌功能、NAFLD 细胞模型中的肝激酶分泌以及中国仓鼠卵巢细胞中的抗体产生。