Suppr超能文献

中国仓鼠卵巢细胞代谢的共识基因组规模重建。

A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism.

机构信息

Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability at the School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, 06-01, Centros, Singapore 138668, Singapore.

出版信息

Cell Syst. 2016 Nov 23;3(5):434-443.e8. doi: 10.1016/j.cels.2016.10.020.

Abstract

Chinese hamster ovary (CHO) cells dominate biotherapeutic protein production and are widely used in mammalian cell line engineering research. To elucidate metabolic bottlenecks in protein production and to guide cell engineering and bioprocess optimization, we reconstructed the metabolic pathways in CHO and associated them with >1,700 genes in the Cricetulus griseus genome. The genome-scale metabolic model based on this reconstruction, iCHO1766, and cell-line-specific models for CHO-K1, CHO-S, and CHO-DG44 cells provide the biochemical basis of growth and recombinant protein production. The models accurately predict growth phenotypes and known auxotrophies in CHO cells. With the models, we quantify the protein synthesis capacity of CHO cells and demonstrate that common bioprocess treatments, such as histone deacetylase inhibitors, inefficiently increase product yield. However, our simulations show that the metabolic resources in CHO are more than three times more efficiently utilized for growth or recombinant protein synthesis following targeted efforts to engineer the CHO secretory pathway. This model will further accelerate CHO cell engineering and help optimize bioprocesses.

摘要

中国仓鼠卵巢(CHO)细胞在生物治疗蛋白生产中占据主导地位,广泛应用于哺乳动物细胞系工程研究。为了阐明蛋白生产中的代谢瓶颈,并指导细胞工程和生物工艺优化,我们重建了 CHO 中的代谢途径,并将其与仓鼠基因组中的>1700 个基因相关联。基于该重建的基因组规模代谢模型 iCHO1766 以及 CHO-K1、CHO-S 和 CHO-DG44 细胞的细胞系特异性模型,为生长和重组蛋白生产提供了生化基础。这些模型准确预测了 CHO 细胞的生长表型和已知的营养缺陷型。利用这些模型,我们量化了 CHO 细胞的蛋白合成能力,并证明了常见的生物工艺处理,如组蛋白去乙酰化酶抑制剂,不能有效地提高产物产量。然而,我们的模拟表明,在针对 CHO 分泌途径进行工程改造后,CHO 中的代谢资源在用于生长或重组蛋白合成时的利用率提高了三倍以上。该模型将进一步加速 CHO 细胞工程,并有助于优化生物工艺。

相似文献

1
A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism.
Cell Syst. 2016 Nov 23;3(5):434-443.e8. doi: 10.1016/j.cels.2016.10.020.
2
How reliable are Chinese hamster ovary (CHO) cell genome-scale metabolic models?
Biotechnol Bioeng. 2023 Sep;120(9):2460-2478. doi: 10.1002/bit.28366. Epub 2023 Mar 18.
3
Application of a curated genome-scale metabolic model of CHO DG44 to an industrial fed-batch process.
Metab Eng. 2019 Jan;51:9-19. doi: 10.1016/j.ymben.2018.09.009. Epub 2018 Sep 15.
4
Systematically gap-filling the genome-scale metabolic model of CHO cells.
Biotechnol Lett. 2021 Jan;43(1):73-87. doi: 10.1007/s10529-020-03021-w. Epub 2020 Oct 10.
5
Enzyme capacity-based genome scale modelling of CHO cells.
Metab Eng. 2020 Jul;60:138-147. doi: 10.1016/j.ymben.2020.04.005. Epub 2020 Apr 21.
7
Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome.
Nat Biotechnol. 2013 Aug;31(8):759-65. doi: 10.1038/nbt.2624. Epub 2013 Jul 21.

引用本文的文献

1
Integration of Bayesian optimization and solution thermodynamics to optimize media design for mammalian biomanufacturing.
iScience. 2025 Jul 3;28(8):112944. doi: 10.1016/j.isci.2025.112944. eCollection 2025 Aug 15.
2
Wheels turning: CHO cell modeling moves into a digital biomanufacturing era: Subtitle: CHO Metabolic Modeling.
Comput Struct Biotechnol J. 2025 Jun 23;27:2796-2813. doi: 10.1016/j.csbj.2025.06.035. eCollection 2025.
4
Multi-scale design and optimization of antibody production via flexible nets.
Comput Struct Biotechnol J. 2025 Apr 3;27:1498-1510. doi: 10.1016/j.csbj.2025.03.040. eCollection 2025.
5
Next-generation sequencing: A powerful multi-purpose tool in cell line development for biologics production.
Comput Struct Biotechnol J. 2025 Apr 3;27:1511-1517. doi: 10.1016/j.csbj.2025.04.006. eCollection 2025.
6
Fantastic genes and where to find them expressed in CHO.
Comput Struct Biotechnol J. 2025 Apr 2;27:1407-1415. doi: 10.1016/j.csbj.2025.03.050. eCollection 2025.
7
Flux Sampling Suggests Metabolic Signatures of High Antibody-Producing CHO Cells.
Biotechnol Bioeng. 2025 Jul;122(7):1898-1913. doi: 10.1002/bit.28982. Epub 2025 Apr 11.

本文引用的文献

1
Dynamic metabolic flux analysis using B-splines to study the effects of temperature shift on CHO cell metabolism.
Metab Eng Commun. 2015 Jun 19;2:46-57. doi: 10.1016/j.meteno.2015.06.001. eCollection 2015 Dec.
2
Recon 2.2: from reconstruction to model of human metabolism.
Metabolomics. 2016;12:109. doi: 10.1007/s11306-016-1051-4. Epub 2016 Jun 7.
3
N-Glycosylation Design and Control of Therapeutic Monoclonal Antibodies.
Trends Biotechnol. 2016 Oct;34(10):835-846. doi: 10.1016/j.tibtech.2016.02.013. Epub 2016 Mar 22.
4
Quantitative feature extraction from the Chinese hamster ovary bioprocess bibliome using a novel meta-analysis workflow.
Biotechnol Adv. 2016 Sep-Oct;34(5):621-633. doi: 10.1016/j.biotechadv.2016.02.011. Epub 2016 Mar 3.
5
A Markov chain model for N-linked protein glycosylation--towards a low-parameter tool for model-driven glycoengineering.
Metab Eng. 2016 Jan;33:52-66. doi: 10.1016/j.ymben.2015.10.007. Epub 2015 Oct 29.
6
BiGG Models: A platform for integrating, standardizing and sharing genome-scale models.
Nucleic Acids Res. 2016 Jan 4;44(D1):D515-22. doi: 10.1093/nar/gkv1049. Epub 2015 Oct 17.
8
Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling.
Biotechnol J. 2015 Jul;10(7):939-49. doi: 10.1002/biot.201400647. Epub 2015 Jun 23.
9
CHOgenome.org 2.0: Genome resources and website updates.
Biotechnol J. 2015 Jul;10(7):931-8. doi: 10.1002/biot.201400646. Epub 2015 Apr 28.
10
Metabolic control of signalling pathways and metabolic auto-regulation.
Biol Cell. 2015 Aug;107(8):251-72. doi: 10.1111/boc.201500015. Epub 2015 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验