Catalyst and Nano Material Research Laboratory (CNMRL), School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran.
Environ Sci Pollut Res Int. 2024 Jan;31(4):6332-6349. doi: 10.1007/s11356-023-31580-8. Epub 2023 Dec 26.
This research endeavors to address the pressing challenge of reducing sulfur content in fuels, an environmental imperative. It does so by employing bimetallic catalysts to enhance the efficiency of oxidative desulfurization (ODS) processes. This involves utilizing successive impregnation and co-impregnation methods to prepare a MoO-VO/AlO. The catalysts underwent characterization using various techniques including X-ray diffraction (XRD), N adsorption-desorption, UV-vis (DRS), temperature-programmed desorption (NH-TPD), Raman, Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), and energy dispersive spectrum (EDS). The catalyst was utilized for the evaluation of the ODS process of dibenzothiophene (DBT). The effects of oxidants, namely HO and t-butyl hydroperoxide (TBHP), were studied in the ODS. The catalyst prepared using the co-impregnation method (5M-15V-co) demonstrated significant acidic sites and exhibited remarkable efficiency in oxidative desulfurization. Remarkably, this catalyst achieved 100% oxidation of sulfur components within 30 min (min). To assess the catalyst's performance further, competitive compounds including nitrogen-containing compounds (NCCs) and saturated and unsaturated hydrocarbon compounds (HCs) were employed in the ODS. Initially, the introduction of NCCs led to a decrease in the sulfur removal rate; however, the catalyst successfully oxidized DBT completely within 60 min. When cyclohexene was present as an olefinic hydrocarbon compound, the catalyst oxidized DBT by approximately 75%, whereas DBT oxidation reached 100% within 20 min when p-xylene was introduced to the catalytic reactor. Additionally, as the O/S ratio increased from 2/5 to 10, the sulfur removal rate improved from 30 to 90%, indicating that HCs and NCCs compete with sulfur in terms of oxidant consumption.
这项研究旨在解决减少燃料中硫含量的紧迫挑战,这是一项环境要求。它通过使用双金属催化剂来提高氧化脱硫(ODS)过程的效率来实现这一目标。这涉及使用连续浸渍和共浸渍方法制备 MoO-VO/AlO。催化剂使用各种技术进行了表征,包括 X 射线衍射(XRD)、N 吸附-解吸、紫外可见漫反射(DRS)、程序升温脱附(NH-TPD)、拉曼、傅里叶变换红外光谱(FTIR)、场发射扫描电子显微镜(FE-SEM)和能谱(EDS)。该催化剂用于评估二苯并噻吩(DBT)的 ODS 过程。研究了氧化剂,即 HO 和叔丁基过氧化氢(TBHP),在 ODS 中的作用。使用共浸渍法制备的催化剂(5M-15V-co)表现出显著的酸性位,并在氧化脱硫中表现出很高的效率。值得注意的是,该催化剂在 30 分钟内实现了 100%的硫氧化(min)。为了进一步评估催化剂的性能,在 ODS 中使用了竞争化合物,包括含氮化合物(NCCs)和饱和与不饱和烃化合物(HCs)。最初,引入 NCCs 会导致硫去除率下降;然而,催化剂在 60 分钟内成功地将 DBT 完全氧化。当环己烯作为烯烃烃化合物存在时,催化剂将 DBT 氧化约 75%,而当向催化反应器中引入对二甲苯时,DBT 氧化在 20 分钟内达到 100%。此外,当 O/S 比从 2/5 增加到 10 时,硫去除率从 30%提高到 90%,表明 HCs 和 NCCs 在氧化剂消耗方面与硫竞争。