Suppr超能文献

当代临床信息系统中的自动化:医疗环境中的人工智能调查。

Automation in Contemporary Clinical Information Systems: a Survey of AI in Healthcare Settings.

机构信息

Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, Australia.

出版信息

Yearb Med Inform. 2023 Aug;32(1):115-126. doi: 10.1055/s-0043-1768733. Epub 2023 Dec 26.

Abstract

AIMS AND OBJECTIVES

To examine the nature and use of automation in contemporary clinical information systems by reviewing studies reporting the implementation and evaluation of artificial intelligence (AI) technologies in healthcare settings.

METHOD

PubMed/MEDLINE, Web of Science, EMBASE, the tables of contents of major informatics journals, and the bibliographies of articles were searched for studies reporting evaluation of AI in clinical settings from January 2021 to December 2022. We documented the clinical application areas and tasks supported, and the level of system autonomy. Reported effects on user experience, decision-making, care delivery and outcomes were summarised.

RESULTS

AI technologies are being applied in a wide variety of clinical areas. Most contemporary systems utilise deep learning, use routinely collected data, support diagnosis and triage, are assistive (requiring users to confirm or approve AI provided information or decisions), and are used by doctors in acute care settings in high-income nations. AI systems are integrated and used within existing clinical information systems including electronic medical records. There is limited support for One Health goals. Evaluation is largely based on quantitative methods measuring effects on decision-making.

CONCLUSION

AI systems are being implemented and evaluated in many clinical areas. There remain many opportunities to understand patterns of routine use and evaluate effects on decision-making, care delivery and patient outcomes using mixed-methods. Support for One Health including integrating data about environmental factors and social determinants needs further exploration.

摘要

目的和目标

通过回顾报告人工智能 (AI) 技术在医疗保健环境中实施和评估的研究,检查当代临床信息系统中自动化的性质和用途。

方法

从 2021 年 1 月到 2022 年 12 月,在 PubMed/MEDLINE、Web of Science、EMBASE、主要信息学期刊的目录和文章的参考文献中搜索报告 AI 在临床环境中评估的研究。我们记录了支持的临床应用领域和任务,以及系统自主性的水平。总结了报告的对用户体验、决策、护理提供和结果的影响。

结果

AI 技术正在广泛的临床领域中应用。大多数当代系统都使用深度学习,使用常规收集的数据,支持诊断和分诊,具有辅助性(要求用户确认或批准 AI 提供的信息或决策),并在高收入国家的急性护理环境中由医生使用。AI 系统集成并用于现有的临床信息系统,包括电子病历。对“One Health”目标的支持有限。评估主要基于定量方法,衡量对决策的影响。

结论

AI 系统正在许多临床领域中实施和评估。仍然有许多机会通过混合方法了解常规使用模式并评估对决策、护理提供和患者结果的影响。需要进一步探索对“One Health”的支持,包括整合有关环境因素和社会决定因素的数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47a4/10751141/faf5adf0852e/10-1055-s-0043-1768733-imagrabi-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验