Suppr超能文献

新型 g-CN 包覆 ZnO-MoS 纳米复合材料的合成及其在储能和光催化方面的应用。

Synthesis of novel nanocomposite of g-CN coated ZnO-MoS for energy storage and photocatalytic applications.

机构信息

School of Applied Sciences, Centurion University of Technology and Management, Odisha, India.

School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni, Khordha, Odisha, India.

出版信息

Chemosphere. 2024 Feb;350:141014. doi: 10.1016/j.chemosphere.2023.141014. Epub 2023 Dec 24.

Abstract

Fabrication of heterostructures for energy storage and environmental remedial applications is an interesting subject of research that has been undertaken in this present investigation. The incorporation of g-CN into ZnO:MoS heterojunction nanocomposite was accomplished by wet-chemical route and characterized by various techniques to ascertain its structure, morphology, and study its potential electro-optical characteristics. The g-CN@ZnO:MoS sample was investigated by x-ray diffraction (XRD) which reveals the co-existence of the ZnO, MoS and CN phases linked to characteristic crystallographic planes in the spectrum, validating the formation of ternary nanocomposite. The XRD patterns of the pristine samples were also considered as reference to understand the structural evolution and phase transformations. Field emission scanning electron microscopy (FESEM) study states the formation of heterogeneous nanostructures having nanoparticles embedded on 2-D nanosheets like structures. Studies using energy dispersive spectroscopy (EDS) and elemental mapping show that all the elements that are linked to the above hybrid nanocomposite are present. Transmission electron microscopy (TEM) provided clear insights on the microstructure as we can identify the distribution of ZnO and MoS nanostructures on layered g-CN nanosheets. The chemical composition and oxidation states of elements were elucidated by X-ray photoelectron spectroscopy (XPS) study, which added another layer of confirmation on the structural evolution of the ternary nanocomposite. Fourier transformed infrared (FTIR) study revealed the layered structure of sp hybridized bonding features of C and N in g-CN, besides Zn-O and Mo-S stretching vibrations. The nanocomposite demonstrated improved photodegradation efficacy and decomposed alizarin red and methylene blue dyes significantly with better stability and reusability. MoS as a co-catalyst acts as an electron acceptor/accelerator in the Z-scheme composite photocatalysis leading to improved photocatalytic efficiency. The resulting heterostructured material delivered a higher specific capacitance of 10.85 F/g with good capacitance retention. Electrochemical study revealed the energy storage capability of the hybrid system.

摘要

用于储能和环境修复应用的异质结构的制造是当前研究中的一个有趣的研究课题。本研究通过湿化学途径成功地将 g-CN 掺入 ZnO:MoS 异质结纳米复合材料中,并通过各种技术对其结构、形态进行了表征,研究了其潜在的光电特性。g-CN@ZnO:MoS 样品的 X 射线衍射(XRD)分析表明,存在 ZnO、MoS 和 CN 相,与光谱中的特征晶面有关,验证了三元纳米复合材料的形成。原始样品的 XRD 图谱也被认为是理解结构演变和相变的参考。场发射扫描电子显微镜(FESEM)研究表明,形成了具有嵌入在二维纳米片样结构中的纳米颗粒的异质纳米结构。使用能量色散光谱(EDS)和元素映射研究表明,与上述混合纳米复合材料相关的所有元素都存在。透射电子显微镜(TEM)提供了关于微结构的清晰见解,因为我们可以识别 ZnO 和 MoS 纳米结构在层状 g-CN 纳米片上的分布。通过 X 射线光电子能谱(XPS)研究阐明了元素的化学组成和氧化态,这为三元纳米复合材料的结构演变提供了另一层确认。傅里叶变换红外(FTIR)研究揭示了 g-CN 中 sp 杂化键合特征的分层结构,以及 Zn-O 和 Mo-S 伸缩振动。该纳米复合材料在稳定性和可重复使用性方面表现出更好的光降解效果,显著分解了茜素红和亚甲基蓝染料。MoS 作为共催化剂,在 Z 型复合光催化中作为电子接受体/加速剂,提高了光催化效率。所得的异质结构材料表现出 10.85 F/g 的更高比电容和良好的电容保持率。电化学研究揭示了混合系统的储能能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验