Suppr超能文献

开发接枝在碳纳米管和还原氧化石墨烯(RGO)上的三元氧化锌掺杂二硫化钼纳米结构用于光催化降解苯胺。

Developing the Ternary ZnO Doped MoS Nanostructures Grafted on CNT and Reduced Graphene Oxide (RGO) for Photocatalytic Degradation of Aniline.

作者信息

Ghasemipour Parisa, Fattahi Moslem, Rasekh Behnam, Yazdian Fatemeh

机构信息

Chemical Engineering Department, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran.

Microbiology and Biotechnology Research Group, Research Institute of Petroleum Industry, National Iranian Oil Company, Tehran, Iran.

出版信息

Sci Rep. 2020 Mar 10;10(1):4414. doi: 10.1038/s41598-020-61367-7.

Abstract

Transition metal sulfide semiconductors have achieved significant attention in the field of photocatalysis and degradation of pollutants. MoS with a two dimensional (2D) layered structure, a narrow bandgap and the ability of getting excited while being exposed to visible light, has demonstrated great potential in visible-light-driven photocatalysts. However, it possesses fast-paced recombination of charges. In this study, the coupled MoS nanosheets were synthesized with ZnO nanorods to develop the heterojunctions photocatalyst in order to obtain superior photoactivity. The charge transfer in this composite is not adequate to achieve desirable activity. Therefore, heterojunction was modified by reduced graphene oxide (RGO) nanosheets and carbon nanotubes (CNTs) to develop the RGO/ZnO/MoS and CNTs/ZnO/MoS ternary nanocomposites. The structure, morphology, composition, optical and photocatalytic properties of the as-fabricated samples were characterized through X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM), Energy-Dispersive X-ray (EDX), elemental mapping, Photoluminescence (PL), Ultraviolet-Visible spectroscopy (UV-VIS), and Brunauer-Emmett-Teller (BET) techniques. The photo-catalytic performance of all samples was evaluated through photodegradation of aniline in aqueous solution. The combination of RGO or CNTs into the ZnO/MoS greatly promoted the catalytic activity. However, the resulting RGO/ZnO/MoS ternary nanocomposites showed appreciably increased catalytic performance, faster than that of CNTs/ZnO/MoS. Charge carrier transfer studies, the BET surface area analysis, and the optical studies confirmed this superiority. The role of operational variables namely, solution pH, catalyst dosage amount, and initial concentration of aniline was then investigated for obtaining maximum degradation. Complete degradation was observed, in the case of pH = 4, catalyst dosage of 0.7 g/L and aniline concentration of 80 ppm, and light intensity of 100 W. According to the results of trapping experiments, hydroxyl radical was found to be the main active species in the photocatalytic reaction. Meanwhile, a plausible mechanism was proposed for describing the degradation of aniline upon ternary composite. Moreover, the catalyst showed excellent reusability and stability after five consecutive cycles due to the synergistic effect between its components. Total-Organic-Carbon concentration (TOC) results suggested that complete mineralization of aniline occurred after 210 min of irradiation. Finally, a real petrochemical wastewater sample was evaluated for testing the catalytic ability of the as-fabricated composites in real case studies and it was observed that the process successfully quenched 100% and 93% of Chemical Oxygen Demand (COD) and TOC in the wastewater, respectively.

摘要

过渡金属硫化物半导体在光催化和污染物降解领域已引起广泛关注。具有二维(2D)层状结构、窄带隙且在可见光照射下能够被激发的二硫化钼,在可见光驱动的光催化剂方面展现出巨大潜力。然而,它存在电荷快速复合的问题。在本研究中,将二硫化钼纳米片与氧化锌纳米棒耦合以制备异质结光催化剂,从而获得优异的光活性。该复合材料中的电荷转移不足以实现理想的活性。因此,通过还原氧化石墨烯(RGO)纳米片和碳纳米管(CNTs)对异质结进行改性,以制备RGO/ZnO/MoS和CNTs/ZnO/MoS三元纳米复合材料。通过X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、能量色散X射线光谱(EDX)、元素映射、光致发光(PL)、紫外可见光谱(UV-VIS)以及布鲁诺尔-埃米特-泰勒(BET)技术对所制备样品的结构、形貌、组成、光学和光催化性能进行了表征。通过对水溶液中苯胺的光降解来评估所有样品的光催化性能。将RGO或CNTs引入ZnO/MoS中极大地促进了催化活性。然而,所得的RGO/ZnO/MoS三元纳米复合材料表现出明显提高的催化性能,比CNTs/ZnO/MoS更快。电荷载流子转移研究、BET表面积分析以及光学研究证实了这种优越性。随后研究了操作变量即溶液pH值、催化剂用量和苯胺初始浓度对实现最大降解的作用。在pH = 4、催化剂用量为0.7 g/L、苯胺浓度为80 ppm以及光强为100 W的情况下观察到完全降解。根据捕获实验结果,发现羟基自由基是光催化反应中的主要活性物种。同时,提出了一个合理的机制来描述三元复合材料上苯胺的降解过程。此外,由于其各组分之间的协同作用,该催化剂在连续五个循环后表现出优异的可重复使用性和稳定性。总有机碳浓度(TOC)结果表明,照射210分钟后苯胺发生了完全矿化。最后,对实际石化废水样品进行评估,以测试所制备复合材料在实际案例研究中的催化能力,结果观察到该过程分别成功去除了废水中100%和93%的化学需氧量(COD)和TOC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7190/7064525/e6b1dd476f31/41598_2020_61367_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验