文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

抑制 xCT 的代偿性升高可与双硫仑/铜诱导的 GSH 消耗协同作用,引发级联铁死亡和铜死亡。

Inhibiting the compensatory elevation of xCT collaborates with disulfiram/copper-induced GSH consumption for cascade ferroptosis and cuproptosis.

机构信息

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.

Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.

出版信息

Redox Biol. 2024 Feb;69:103007. doi: 10.1016/j.redox.2023.103007. Epub 2023 Dec 19.


DOI:10.1016/j.redox.2023.103007
PMID:38150993
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10788306/
Abstract

Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors and the fourth leading cause of cancer-related death globally, which is characterized by complicated pathophysiology, high recurrence rate, and poor prognosis. Our previous study has demonstrated that disulfiram (DSF)/Cu could be repurposed for the treatment of HCC by inducing ferroptosis. However, the effectiveness of DSF/Cu may be compromised by compensatory mechanisms that weaken its sensitivity. The mechanisms underlying these compensatory responses are currently unknown. Herein, we found DSF/Cu induces endoplasmic reticulum stress with disrupted ER structures, increased Ca level and activated expression of ATF4. Further studies verified that DSF/Cu induces both ferroptosis and cuproptosis, accompanied by the depletion of GSH, elevation of lipid peroxides, and compensatory increase of xCT. Comparing ferroptosis and cuproptosis, it is interesting to note that GSH acts at the crossing point of the regulation network and therefore, we hypothesized that compensatory elevation of xCT may be a key aspect of the therapeutic target. Mechanically, knockdown of ATF4 facilitated the DSF/Cu-induced cell death and exacerbated the generation of lipid peroxides under the challenge of DSF/Cu. However, ATF4 knockdown was unable to block the compensatory elevation of xCT and the GSH reduction. Notably, we found that DSF/Cu induced the accumulation of ubiquitinated proteins, promoted the half-life of xCT protein, and dramatically dampened the ubiquitination-proteasome mediated degradation of xCT. Moreover, both pharmacologically and genetically suppressing xCT exacerbated DSF/Cu-induced cell death. In conclusion, the current work provides an in-depth study of the mechanism of DSF/Cu-induced cell death and describes a framework for the further understanding of the crosstalk between ferroptosis and cuproptosis. Inhibiting the compensatory increase of xCT renders HCC cells more susceptible to DSF/Cu, which may provide a promising synergistic strategy to sensitize tumor therapy and overcome drug resistance, as it activates different programmed cell death.

摘要

肝细胞癌(HCC)是最常见的恶性肿瘤之一,也是全球癌症相关死亡的第四大主要原因,其特点是病理生理学复杂、复发率高、预后差。我们之前的研究表明,双硫仑(DSF)/铜可以通过诱导铁死亡被重新用于治疗 HCC。然而,DSF/Cu 的有效性可能会因削弱其敏感性的代偿机制而受到影响。这些代偿反应的机制目前尚不清楚。在此,我们发现 DSF/Cu 诱导内质网应激,导致内质网结构破坏、Ca 水平升高和 ATF4 激活表达。进一步的研究证实,DSF/Cu 诱导铁死亡和铜死亡,同时伴随着 GSH 的耗竭、脂质过氧化物的增加以及 xCT 的代偿性增加。比较铁死亡和铜死亡,有趣的是,GSH 作用于调控网络的交汇点,因此,我们假设 xCT 的代偿性增加可能是治疗靶点的一个关键方面。从机制上讲,敲低 ATF4 促进了 DSF/Cu 诱导的细胞死亡,并在 DSF/Cu 的挑战下加剧了脂质过氧化物的产生。然而,ATF4 的敲低不能阻断 xCT 的代偿性增加和 GSH 的减少。值得注意的是,我们发现 DSF/Cu 诱导了泛素化蛋白的积累,促进了 xCT 蛋白的半衰期,并显著抑制了 xCT 的泛素化蛋白酶体介导的降解。此外,无论是药理学还是遗传学上抑制 xCT 都加剧了 DSF/Cu 诱导的细胞死亡。总之,本研究深入探讨了 DSF/Cu 诱导细胞死亡的机制,并描述了一个框架,以进一步理解铁死亡和铜死亡之间的串扰。抑制 xCT 的代偿性增加使 HCC 细胞对 DSF/Cu 更为敏感,这可能为增强肿瘤治疗敏感性和克服耐药性提供一种有前途的协同策略,因为它激活了不同的程序性细胞死亡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/656828068ea1/mmcfigs9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/369f14406f6b/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/673d4a46d5d2/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/4d40a6d535bc/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/3713ef5de75d/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/51fa68ab9540/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/404239416849/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/f9634bf3f6e7/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/9313dd4ea603/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/41301ea33886/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/2cfa7770d246/mmcfigs1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/42585a7760bd/mmcfigs2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/486e1a617a8b/mmcfigs3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/a7494544fb25/mmcfigs4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/978bad9dfc75/mmcfigs5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/bc0f8a818559/mmcfigs6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/13532a096c05/mmcfigs7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/4777af470f60/mmcfigs8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/656828068ea1/mmcfigs9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/369f14406f6b/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/673d4a46d5d2/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/4d40a6d535bc/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/3713ef5de75d/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/51fa68ab9540/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/404239416849/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/f9634bf3f6e7/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/9313dd4ea603/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/41301ea33886/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/2cfa7770d246/mmcfigs1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/42585a7760bd/mmcfigs2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/486e1a617a8b/mmcfigs3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/a7494544fb25/mmcfigs4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/978bad9dfc75/mmcfigs5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/bc0f8a818559/mmcfigs6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/13532a096c05/mmcfigs7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/4777af470f60/mmcfigs8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f76/10788306/656828068ea1/mmcfigs9.jpg

相似文献

[1]
Inhibiting the compensatory elevation of xCT collaborates with disulfiram/copper-induced GSH consumption for cascade ferroptosis and cuproptosis.

Redox Biol. 2024-2

[2]
Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosis.

Redox Biol. 2021-10

[3]
GSH exhaustion via inhibition of xCT-GSH-GPX4 pathway synergistically enhanced DSF/Cu-induced cuproptosis in myelodysplastic syndromes.

Free Radic Biol Med. 2024-9

[4]
A strategy of "adding fuel to the flames" enables a self-accelerating cycle of ferroptosis-cuproptosis for potent antitumor therapy.

Biomaterials. 2024-12

[5]
ATF4 suppresses hepatocarcinogenesis by inducing SLC7A11 (xCT) to block stress-related ferroptosis.

J Hepatol. 2023-8

[6]
Nrf2/HO-1 Alleviates Disulfiram/Copper-Induced Ferroptosis in Oral Squamous Cell Carcinoma.

Biochem Genet. 2024-2

[7]
Dihydroartemisinin induces ferroptosis of hepatocellular carcinoma via inhibiting ATF4-xCT pathway.

J Cell Mol Med. 2024-4

[8]
Disulfiram/Copper Induce Ferroptosis in Triple-Negative Breast Cancer Cell Line MDA-MB-231.

Front Biosci (Landmark Ed). 2023-8-28

[9]
Elesclomol-copper synergizes with imidazole ketone erastin by promoting cuproptosis and ferroptosis in myelodysplastic syndromes.

Biomed Pharmacother. 2024-6

[10]
Inhibition of lung adenocarcinoma by combinations of sulfasalazine (SAS) and disulfiram-copper (DSF-Cu) in cell line models and mice.

Carcinogenesis. 2023-6-24

引用本文的文献

[1]
The potential functions of ferroptosis on urinary stones: mechanisms and therapeutic implications.

Front Physiol. 2025-8-20

[2]
Protein lipoylation in cancer: metabolic reprogramming and therapeutic potential.

Cell Death Discov. 2025-9-2

[3]
Ferroptosis as a therapeutic target in glioblastoma: Mechanisms and emerging strategies.

Mol Ther Nucleic Acids. 2025-7-30

[4]
Copper metabolism and cuproptosis: broad perspectives in the treatment of hepatocellular carcinoma.

Front Oncol. 2025-7-30

[5]
Mechanisms of copper metabolism and cuproptosis: implications for liver diseases.

Front Immunol. 2025-7-30

[6]
Targeting cuproptosis in liver cancer: Molecular mechanisms and therapeutic implications.

Apoptosis. 2025-8-7

[7]
Plumbagin Triggers Cuproptosis in Hepatocellular Carcinoma (HCC) via the DNA-Methyltransferase 1 (DNMT1)/microRNA-302a-3p (miR-302a-3p)/ATPase Copper Transporting Beta (ATP7B) Axis.

MedComm (2020). 2025-8-3

[8]
Ferroptosis and Metabolic Dysregulation: Emerging Chemical Targets in Cancer and Infection.

Molecules. 2025-7-18

[9]
DHODH-mediated mitochondrial redox homeostasis: a novel ferroptosis regulator and promising therapeutic target.

Redox Biol. 2025-7-23

[10]
Hypoxia, cuproptosis, and osteoarthritis: Unraveling the molecular crosstalk.

Redox Biol. 2025-7-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索