Lee Hansol, Roh Soung-Hun
School of Biological Sciences, Seoul National University, Seoul, South Korea.
Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
FEBS J. 2024 Jul;291(14):3072-3079. doi: 10.1111/febs.17048. Epub 2024 Jan 10.
Dicer, a multi-domain ribonuclease III (RNase III) protein, is crucial for gene regulation via RNA interference. It processes hairpin-like precursors into microRNAs (miRNAs) and long double-stranded RNAs (dsRNAs) into small interfering RNAs (siRNAs). During the "dicing" process, the miRNA or siRNA substrate is stably anchored and cleaved by Dicer's RNase III domain. Although numerous studies have investigated long dsRNA cleavage by Dicer, the specific mechanism by which human Dicer (hDICER) processes pre-miRNA remains unelucidated. This review introduces the recently revealed hDICER structure bound to pre-miRNA uncovered through cryo-electron microscopy and compares it with previous reports describing Dicer. The domain-wise movements of the helicase and dsRNA-binding domain (dsRBD) and specific residues involved in substrate sequence recognition have been identified. During RNA substrate binding, the hDICER apical domains and dsRBD recognize the pre-miRNA termini and cleavage site, respectively. Residue rearrangements in positively charged pockets within the apical domain influence substrate recognition and cleavage site determination. The specific interactions between dsRBD positively charged residues and nucleotide bases near the cleavage site emphasize the significance of cis-acting elements in the hDICER processing mechanism. These findings provide valuable insights for understanding hDICER-related diseases.
Dicer是一种多结构域核糖核酸酶III(RNase III)蛋白,对通过RNA干扰进行的基因调控至关重要。它将发夹状前体加工成微小RNA(miRNA),并将长双链RNA(dsRNA)加工成小干扰RNA(siRNA)。在“切割”过程中,miRNA或siRNA底物被Dicer的RNase III结构域稳定锚定并切割。尽管众多研究调查了Dicer对长dsRNA的切割,但人类Dicer(hDICER)加工前体miRNA的具体机制仍未阐明。本综述介绍了最近通过冷冻电子显微镜揭示的与前体miRNA结合的hDICER结构,并将其与之前描述Dicer的报告进行了比较。已经确定了解旋酶和双链RNA结合结构域(dsRBD)的结构域水平运动以及参与底物序列识别的特定残基。在RNA底物结合过程中,hDICER顶端结构域和dsRBD分别识别前体miRNA的末端和切割位点。顶端结构域内带正电荷口袋中的残基重排影响底物识别和切割位点的确定。dsRBD带正电荷残基与切割位点附近核苷酸碱基之间的特定相互作用强调了顺式作用元件在hDICER加工机制中的重要性。这些发现为理解与hDICER相关的疾病提供了有价值的见解。