表征动脉粥样硬化组织:使用血管内超声和逆有限元方法分析力学性能。

Characterizing atherosclerotic tissues: analysis of mechanical properties using intravascular ultrasound and inverse finite element methods.

作者信息

Latorre Álvaro T, Martínez Miguel A, Peña Estefanía

机构信息

Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.

CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain.

出版信息

Front Bioeng Biotechnol. 2023 Dec 13;11:1304278. doi: 10.3389/fbioe.2023.1304278. eCollection 2023.

Abstract

Atherosclerosis is a prevalent cause of acute coronary syndromes that consists of lipid deposition inside the artery wall, creating an atherosclerotic plaque. Early detection may prevent the risk of plaque rupture. Nowadays, intravascular ultrasound (IVUS) is the most common medical imaging technology for atherosclerotic plaque detection. It provides an image of the section of the coronary wall and, in combination with new techniques, can estimate the displacement or strain fields. From these magnitudes and by inverse analysis, it is possible to estimate the mechanical properties of the plaque tissues and their stress distribution. In this paper, we presented a methodology based on two approaches to characterize the mechanical properties of atherosclerotic tissues. The first approach estimated the linear behavior under particular pressure. In contrast, the second technique yielded the non-linear hyperelastic material curves for the fibrotic tissues across the complete physiological pressure range. To establish and validate this method, the theoretical framework employed models to simulate atherosclerotic plaques and their IVUS data. We analyzed different materials and real geometries with finite element (FE) models. After the segmentation of the fibrotic, calcification, and lipid tissues, an inverse FE analysis was performed to estimate the mechanical response of the tissues. Both approaches employed an optimization process to obtain the mechanical properties by minimizing the error between the radial strains obtained from the simulated IVUS and those achieved in each iteration. The second methodology was successfully applied to five distinct real geometries and four different fibrotic tissues, getting median of 0.97 and 0.92, respectively, when comparing the real and estimated behavior curves. In addition, the last technique reduced errors in the estimated plaque strain field by more than 20% during the optimization process, compared to the former approach. The findings enabled the estimation of the stress field over the hyperelastic plaque tissues, providing valuable insights into its risk of rupture.

摘要

动脉粥样硬化是急性冠状动脉综合征的常见病因,它由动脉壁内的脂质沉积形成动脉粥样硬化斑块。早期检测可预防斑块破裂风险。如今,血管内超声(IVUS)是检测动脉粥样硬化斑块最常用的医学成像技术。它能提供冠状动脉壁截面的图像,并结合新技术估计位移或应变场。通过这些量值并进行反分析,可以估计斑块组织的力学性能及其应力分布。在本文中,我们提出了一种基于两种方法来表征动脉粥样硬化组织力学性能的方法。第一种方法估计特定压力下的线性行为。相比之下,第二种技术得出了纤维化组织在整个生理压力范围内的非线性超弹性材料曲线。为了建立和验证该方法,理论框架采用模型来模拟动脉粥样硬化斑块及其IVUS数据。我们用有限元(FE)模型分析了不同的材料和实际几何形状。在对纤维化、钙化和脂质组织进行分割后,进行了有限元反分析以估计组织的力学响应。两种方法都采用了优化过程,通过最小化模拟IVUS得到的径向应变与每次迭代中得到的径向应变之间的误差来获得力学性能。第二种方法成功应用于五个不同的实际几何形状和四种不同的纤维化组织,在比较实际行为曲线和估计行为曲线时,中位数分别为0.97和0.92。此外,与前一种方法相比,最后一种技术在优化过程中将估计的斑块应变场误差降低了20%以上。这些发现能够估计超弹性斑块组织上的应力场,为其破裂风险提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70e8/10751321/ad5e5ff50c6b/fbioe-11-1304278-g001.jpg

相似文献

[10]

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索