Suppr超能文献

动脉粥样硬化中的冠状动脉特性:一种深度学习预测模型。

Coronary artery properties in atherosclerosis: A deep learning predictive model.

作者信息

Caballero Ricardo, Martínez Miguel Ángel, Peña Estefanía

机构信息

Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.

Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicina (CIBER-BBN), Madrid, Spain.

出版信息

Front Physiol. 2023 Apr 5;14:1162436. doi: 10.3389/fphys.2023.1162436. eCollection 2023.

Abstract

In this work an Artificial Neural Network (ANN) was developed to help in the diagnosis of plaque vulnerability by predicting the Young modulus of the core ( ) and the plaque ( ) of atherosclerotic coronary arteries. A representative database was constructed to train the ANN using Finite Element simulations covering the ranges of mechanical properties present in the bibliography. A statistical analysis to pre-process the data and determine the most influential variables was performed to select the inputs of the ANN. The ANN was based on Multilayer Perceptron architecture and trained using the developed database, resulting in a Mean Squared Error (MSE) in the loss function under 10, enabling accurate predictions on the test dataset for and . Finally, the ANN was applied to estimate the mechanical properties of 10,000 realistic plaques, resulting in relative errors lower than 3%.

摘要

在这项工作中,开发了一种人工神经网络(ANN),通过预测动脉粥样硬化冠状动脉核心( )和斑块( )的杨氏模量来辅助斑块易损性的诊断。构建了一个具有代表性的数据库,使用涵盖文献中存在的力学性能范围的有限元模拟来训练人工神经网络。进行了统计分析以预处理数据并确定最具影响力的变量,从而选择人工神经网络的输入。该人工神经网络基于多层感知器架构,并使用所开发的数据库进行训练,损失函数中的均方误差(MSE)低于10,从而能够对测试数据集上的 和 进行准确预测。最后,将该人工神经网络应用于估计10000个真实斑块的力学性能,相对误差低于3%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4a5/10113490/0cc11fe55154/fphys-14-1162436-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验