Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran.
Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, 750 07 Sweden.
J Biochem. 2024 Mar 25;175(4):447-456. doi: 10.1093/jb/mvad116.
Phosphorylation is the most important and studied post-translational modification (PTM), which plays a crucial role in protein function studies and experimental design. Many significant studies have been performed to predict phosphorylation sites using various machine-learning methods. Recently, several studies have claimed that deep learning-based methods are the best way to predict the phosphorylation sites because deep learning as an advanced machine learning method can automatically detect complex representations of phosphorylation patterns from raw sequences and thus offers a powerful tool to improve phosphorylation site prediction. In this study, we report DF-Phos, a new phosphosite predictor based on the Deep Forest to predict phosphorylation sites. In DF-Phos, the feature vector taken from the CkSAApair method is as input for a Deep Forest framework for predicting phosphorylation sites. The results of 10-fold cross-validation show that the Deep Forest method has the highest performance among other available methods. We implemented a Python program of DF-Phos, which is freely available for non-commercial use at https://github.com/zahiriz/DF-Phos Moreover, users can use it for various PTM predictions.
磷酸化是最重要和研究最深入的翻译后修饰(PTM),它在蛋白质功能研究和实验设计中起着至关重要的作用。已经进行了许多重要的研究,以使用各种机器学习方法来预测磷酸化位点。最近,有几项研究声称基于深度学习的方法是预测磷酸化位点的最佳方法,因为深度学习作为一种先进的机器学习方法,可以自动从原始序列中检测磷酸化模式的复杂表示,从而提供了一种强大的工具来改进磷酸化位点预测。在这项研究中,我们报告了基于深度森林的新磷酸化位点预测器 DF-Phos,用于预测磷酸化位点。在 DF-Phos 中,来自 CkSAApair 方法的特征向量作为输入,用于预测磷酸化位点的深度森林框架。10 倍交叉验证的结果表明,深度森林方法在其他可用方法中具有最高的性能。我们实现了一个用于 DF-Phos 的 Python 程序,该程序可在 https://github.com/zahiriz/DF-Phos 上免费供非商业使用。此外,用户可以将其用于各种翻译后修饰的预测。