Suppr超能文献

从图像到视频的自适应跨模态可转移对抗攻击

Adaptive Cross-Modal Transferable Adversarial Attacks From Images to Videos.

作者信息

Wei Zhipeng, Chen Jingjing, Wu Zuxuan, Jiang Yu-Gang

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 May;46(5):3772-3783. doi: 10.1109/TPAMI.2023.3347835. Epub 2024 Apr 3.

Abstract

The cross-model transferability of adversarial examples makes black-box attacks to be practical. However, it typically requires access to the input of the same modality as black-box models to attain reliable transferability. Unfortunately, the collection of datasets may be difficult in security-critical scenarios. Hence, developing cross-modal attacks for fooling models with different modalities of inputs would highly threaten real-world DNNs applications. The above considerations motivate us to investigate cross-modal transferability of adversarial examples. In particular, we aim to generate video adversarial examples from white-box image models to attack video CNN and ViT models. We introduce the Image To Video (I2V) attack based on the observation that image and video models share similar low-level features. For each video frame, I2V optimizes perturbations by reducing the similarity of intermediate features between benign and adversarial frames on image models. Then I2V combines adversarial frames together to generate video adversarial examples. I2V can be easily extended to simultaneously perturb multi-layer features extracted from an ensemble of image models. To efficiently integrate various features, we introduce an adaptive approach to re-weight the contributions of each layer based on its cosine similarity values of the previous attack step. Experimental results demonstrate the effectiveness of the proposed method.

摘要

对抗样本的跨模型可迁移性使得黑盒攻击变得切实可行。然而,通常需要获取与黑盒模型相同模态的输入才能实现可靠的可迁移性。不幸的是,在对安全性要求极高的场景中,数据集的收集可能会很困难。因此,开发用于欺骗具有不同输入模态模型的跨模态攻击将对现实世界中的深度神经网络应用构成极大威胁。上述考虑因素促使我们研究对抗样本的跨模态可迁移性。具体而言,我们旨在从白盒图像模型生成视频对抗样本,以攻击视频卷积神经网络(CNN)和视觉Transformer(ViT)模型。基于图像和视频模型共享相似的低级特征这一观察结果,我们引入了图像到视频(I2V)攻击。对于每个视频帧,I2V通过降低图像模型上良性帧和对抗帧之间中间特征的相似度来优化扰动。然后,I2V将对抗帧组合在一起以生成视频对抗样本。I2V可以很容易地扩展为同时扰动从一组图像模型中提取的多层特征。为了有效地整合各种特征,我们引入了一种自适应方法,根据上一步攻击的余弦相似度值对每一层的贡献进行重新加权。实验结果证明了所提方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验