Suppr超能文献

基于聚类的胶质母细胞瘤预后预测:基于弥散和灌注相似性揭示异质性。

Cluster-based prognostication in glioblastoma: Unveiling heterogeneity based on diffusion and perfusion similarities.

机构信息

Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.

Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.

出版信息

Neuro Oncol. 2024 Jun 3;26(6):1099-1108. doi: 10.1093/neuonc/noad259.

Abstract

BACKGROUND

While the association between diffusion and perfusion magnetic resonance imaging (MRI) and survival in glioblastoma is established, prognostic models for patients are lacking. This study employed clustering of functional imaging to identify distinct functional phenotypes in untreated glioblastomas, assessing their prognostic significance for overall survival.

METHODS

A total of 289 patients with glioblastoma who underwent preoperative multimodal MR imaging were included. Mean values of apparent diffusion coefficient normalized relative cerebral blood volume and relative cerebral blood flow were calculated for different tumor compartments and the entire tumor. Distinct imaging patterns were identified using partition around medoids (PAM) clustering on the training dataset, and their ability to predict overall survival was assessed. Additionally, tree-based machine-learning models were trained to ascertain the significance of features pertaining to cluster membership.

RESULTS

Using the training dataset (231/289) we identified 2 stable imaging phenotypes through PAM clustering with significantly different overall survival (OS). Validation in an independent test set revealed a high-risk group with a median OS of 10.2 months and a low-risk group with a median OS of 26.6 months (P = 0.012). Patients in the low-risk cluster had high diffusion and low perfusion values throughout, while the high-risk cluster displayed the reverse pattern. Including cluster membership in all multivariate Cox regression analyses improved performance (P ≤ 0.004 each).

CONCLUSIONS

Our research demonstrates that data-driven clustering can identify clinically relevant, distinct imaging phenotypes, highlighting the potential role of diffusion, and perfusion MRI in predicting survival rates of glioblastoma patients.

摘要

背景

虽然弥散和灌注磁共振成像(MRI)与胶质母细胞瘤患者的生存之间存在关联,但缺乏针对患者的预后模型。本研究通过对功能成像进行聚类,在未经治疗的胶质母细胞瘤中识别出不同的功能表型,并评估其对总生存期的预后意义。

方法

共纳入 289 例接受术前多模态磁共振成像的胶质母细胞瘤患者。计算不同肿瘤区室和整个肿瘤的表观扩散系数归一化相对脑血容量和相对脑血流量的平均值。使用中位数分区(PAM)聚类在训练数据集上识别出不同的成像模式,并评估其预测总生存期的能力。此外,还训练了基于树的机器学习模型以确定与聚类成员相关的特征的重要性。

结果

使用训练数据集(231/289),我们通过 PAM 聚类确定了 2 种稳定的成像表型,它们的总生存期(OS)有显著差异。在独立测试集中的验证显示,高危组的中位 OS 为 10.2 个月,低危组的中位 OS 为 26.6 个月(P=0.012)。低危组的患者整个过程中弥散值高而灌注值低,而高危组的患者则相反。在所有多变量 Cox 回归分析中纳入聚类成员均能提高性能(P≤0.004 每个)。

结论

我们的研究表明,数据驱动的聚类可以识别出具有临床意义的不同成像表型,突出了弥散和灌注 MRI 在预测胶质母细胞瘤患者生存率方面的潜在作用。

相似文献

2
Shape matters: unsupervised exploration of IDH-wildtype glioma imaging survival predictors.
Eur Radiol. 2025 Mar;35(3):1351-1360. doi: 10.1007/s00330-024-11042-6. Epub 2024 Sep 9.
3
Ventricle contact is associated with lower survival and increased peritumoral perfusion in glioblastoma.
J Neurosurg. 2018 Oct 19;131(3):717-723. doi: 10.3171/2018.5.JNS18340.
6
Multi-parametric and multi-regional histogram analysis of MRI: modality integration reveals imaging phenotypes of glioblastoma.
Eur Radiol. 2019 Sep;29(9):4718-4729. doi: 10.1007/s00330-018-5984-z. Epub 2019 Feb 1.
7
Low perfusion compartments in glioblastoma quantified by advanced magnetic resonance imaging and correlated with patient survival.
Radiother Oncol. 2019 May;134:17-24. doi: 10.1016/j.radonc.2019.01.008. Epub 2019 Jan 31.
8
Combining Perfusion and High B-value Diffusion MRI to Inform Prognosis and Predict Failure Patterns in Glioblastoma.
Int J Radiat Oncol Biol Phys. 2018 Nov 15;102(4):757-764. doi: 10.1016/j.ijrobp.2018.04.045. Epub 2018 Jun 2.

引用本文的文献

1
Decoding Glioblastoma Heterogeneity: Neuroimaging Meets Machine Learning.
Neurosurgery. 2025 Jun 1;96(6):1181-1192. doi: 10.1227/neu.0000000000003260. Epub 2024 Nov 21.
2
Shape matters: unsupervised exploration of IDH-wildtype glioma imaging survival predictors.
Eur Radiol. 2025 Mar;35(3):1351-1360. doi: 10.1007/s00330-024-11042-6. Epub 2024 Sep 9.

本文引用的文献

2
Adult-type and Pediatric-type Diffuse Gliomas : What the Neuroradiologist Should Know.
Clin Neuroradiol. 2023 Sep;33(3):611-624. doi: 10.1007/s00062-023-01277-z. Epub 2023 Mar 20.
4
Predicting survival of glioblastoma from automatic whole-brain and tumor segmentation of MR images.
Sci Rep. 2022 Nov 17;12(1):19744. doi: 10.1038/s41598-022-19223-3.
7
The 2021 WHO Classification of Tumors of the Central Nervous System: a summary.
Neuro Oncol. 2021 Aug 2;23(8):1231-1251. doi: 10.1093/neuonc/noab106.
8
DCE-MRI in Glioma, Infiltration Zone and Healthy Brain to Assess Angiogenesis: A Biopsy Study.
Clin Neuroradiol. 2021 Dec;31(4):1049-1058. doi: 10.1007/s00062-021-01015-3. Epub 2021 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验