Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.
Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.
Neuro Oncol. 2024 Jun 3;26(6):1099-1108. doi: 10.1093/neuonc/noad259.
While the association between diffusion and perfusion magnetic resonance imaging (MRI) and survival in glioblastoma is established, prognostic models for patients are lacking. This study employed clustering of functional imaging to identify distinct functional phenotypes in untreated glioblastomas, assessing their prognostic significance for overall survival.
A total of 289 patients with glioblastoma who underwent preoperative multimodal MR imaging were included. Mean values of apparent diffusion coefficient normalized relative cerebral blood volume and relative cerebral blood flow were calculated for different tumor compartments and the entire tumor. Distinct imaging patterns were identified using partition around medoids (PAM) clustering on the training dataset, and their ability to predict overall survival was assessed. Additionally, tree-based machine-learning models were trained to ascertain the significance of features pertaining to cluster membership.
Using the training dataset (231/289) we identified 2 stable imaging phenotypes through PAM clustering with significantly different overall survival (OS). Validation in an independent test set revealed a high-risk group with a median OS of 10.2 months and a low-risk group with a median OS of 26.6 months (P = 0.012). Patients in the low-risk cluster had high diffusion and low perfusion values throughout, while the high-risk cluster displayed the reverse pattern. Including cluster membership in all multivariate Cox regression analyses improved performance (P ≤ 0.004 each).
Our research demonstrates that data-driven clustering can identify clinically relevant, distinct imaging phenotypes, highlighting the potential role of diffusion, and perfusion MRI in predicting survival rates of glioblastoma patients.
虽然弥散和灌注磁共振成像(MRI)与胶质母细胞瘤患者的生存之间存在关联,但缺乏针对患者的预后模型。本研究通过对功能成像进行聚类,在未经治疗的胶质母细胞瘤中识别出不同的功能表型,并评估其对总生存期的预后意义。
共纳入 289 例接受术前多模态磁共振成像的胶质母细胞瘤患者。计算不同肿瘤区室和整个肿瘤的表观扩散系数归一化相对脑血容量和相对脑血流量的平均值。使用中位数分区(PAM)聚类在训练数据集上识别出不同的成像模式,并评估其预测总生存期的能力。此外,还训练了基于树的机器学习模型以确定与聚类成员相关的特征的重要性。
使用训练数据集(231/289),我们通过 PAM 聚类确定了 2 种稳定的成像表型,它们的总生存期(OS)有显著差异。在独立测试集中的验证显示,高危组的中位 OS 为 10.2 个月,低危组的中位 OS 为 26.6 个月(P=0.012)。低危组的患者整个过程中弥散值高而灌注值低,而高危组的患者则相反。在所有多变量 Cox 回归分析中纳入聚类成员均能提高性能(P≤0.004 每个)。
我们的研究表明,数据驱动的聚类可以识别出具有临床意义的不同成像表型,突出了弥散和灌注 MRI 在预测胶质母细胞瘤患者生存率方面的潜在作用。