Suppr超能文献

基于自动编码器网络的扫描离子电导显微镜快速扫描方法

Rapid scanning method for SICM based on autoencoder network.

作者信息

Wu Wenlin, Liao Xiaobo, Wang Lei, Chen Siyu, Zhuang Jian, Zheng Qiangqiang

机构信息

Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China.

Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China.

出版信息

Micron. 2024 Feb;177:103579. doi: 10.1016/j.micron.2023.103579. Epub 2023 Dec 21.

Abstract

Scanning Ion Conductance Microscopy (SICM) enables non-destructive imaging of living cells, which makes it highly valuable in life sciences, medicine, pharmacology, and many other fields. However, because of the uncertainty retrace height of SICM hopping mode, the time resolution of SICM is relatively low, which makes the device fail to meet the demands of dynamic scanning. To address above issues, we propose a fast-scanning method for SICM based on an autoencoder network. Firstly, we cut under-sampled images into small image lists. Secondly, we feed them into a self-constructed primitive-autoencoder super-resolution network to compute high-resolution images. Finally, the inferred scanning path is determined using the computed images to reconstruct the real high-resolution scanning path. The results demonstrate that the proposed network can reconstruct higher-resolution images in various super-resolution tasks of low-resolution scanned images. Compared to existing traditional interpolation methods, the average peak signal-to-noise ratio improvement is greater than 7.5823 dB, and the average structural similarity index improvement is greater than 0.2372. At the same time, using the proposed method for high-resolution image scanning leads to a 156.25% speed improvement compared to traditional methods. It opens up possibilities for achieving high-time resolution imaging of dynamic samples in SICM and further promotes the widespread application of SICM in the future.

摘要

扫描离子电导显微镜(SICM)能够对活细胞进行无损成像,这使其在生命科学、医学、药理学以及许多其他领域具有极高的价值。然而,由于SICM跳跃模式的回扫高度存在不确定性,SICM的时间分辨率相对较低,导致该设备无法满足动态扫描的需求。为了解决上述问题,我们提出了一种基于自动编码器网络的SICM快速扫描方法。首先,我们将欠采样图像切割成小图像列表。其次,将它们输入到自行构建的原始自动编码器超分辨率网络中以计算高分辨率图像。最后,利用计算得到的图像确定推断的扫描路径,以重建真实的高分辨率扫描路径。结果表明,所提出的网络能够在低分辨率扫描图像的各种超分辨率任务中重建更高分辨率的图像。与现有的传统插值方法相比,平均峰值信噪比提高大于7.5823 dB,平均结构相似性指数提高大于0.2372。同时,使用所提出的方法进行高分辨率图像扫描,与传统方法相比速度提高了156.25%。这为在SICM中实现动态样本的高时间分辨率成像开辟了可能性,并进一步推动了SICM在未来的广泛应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验