Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Centre for Oesophageal Diseases, Guy's and St. Thomas Hospital, London, United Kingdom.
Institute of Information Science and Technologies "A. Faedo", National Research Council of Italy (CNR), Pisa, Italy.
J Allergy Clin Immunol Pract. 2024 Apr;12(4):1008-1016.e1. doi: 10.1016/j.jaip.2023.12.031. Epub 2023 Dec 27.
BACKGROUND: Despite increased awareness of eosinophilic esophagitis (EoE), the diagnostic delay has remained stable over the past 3 decades. There is a need to improve the diagnostic performance and optimize resources allocation in the setting of EoE. OBJECTIVE: We developed and validated 2 point-of-care machine learning (ML) tools to predict a diagnosis of EoE before histology results during office visits. METHODS: We conducted a multicenter study in 3 European tertiary referral centers for EoE. We built predictive ML models using retrospectively extracted clinical and esophagogastroduodenoscopy (EGDS) data collected from 273 EoE and 55 non-EoE dysphagia patients. We validated the models on an independent cohort of 93 consecutive patients with dysphagia undergoing EGDS with biopsies at 2 different centers. Models' performance was assessed by area under the curve (AUC), sensitivity, specificity, and positive and negative predictive values (PPV and NPV). The models were integrated into a point-of-care software package. RESULTS: The model trained on clinical data alone showed an AUC of 0.90 and a sensitivity, specificity, PPV, and NPV of 0.90, 0.75, 0.80, and 0.87, respectively, for the diagnosis of EoE in the external validation cohort. The model trained on a combination of clinical and endoscopic data showed an AUC of 0.94, and a sensitivity, specificity, PPV, and NPV of 0.94, 0.68, 0.77, and 0.91, respectively, in the external validation cohort. CONCLUSION: Our software-integrated models (https://webapplicationing.shinyapps.io/PointOfCare-EoE/) can be used at point-of-care to improve the diagnostic workup of EoE and optimize resources allocation.
背景:尽管人们对嗜酸性食管炎(EoE)的认识有所提高,但在过去的 30 年中,其诊断延迟一直保持稳定。需要提高 EoE 环境下的诊断性能并优化资源分配。
目的:我们开发并验证了 2 种即时护理机器学习(ML)工具,以便在就诊时在获得组织学结果之前预测 EoE 的诊断。
方法:我们在 3 个欧洲 EoE 三级转诊中心进行了一项多中心研究。我们使用从 273 例 EoE 和 55 例非 EoE 吞咽困难患者中回顾性提取的临床和食管胃十二指肠镜(EGDS)数据构建了预测性 ML 模型。我们在 2 个不同中心进行 EGDS 活检的 93 例连续吞咽困难患者的独立队列中验证了模型。通过曲线下面积(AUC)、灵敏度、特异性、阳性和阴性预测值(PPV 和 NPV)评估模型的性能。该模型整合到即时护理软件包中。
结果:仅基于临床数据训练的模型在外部验证队列中的 AUC 为 0.90,诊断 EoE 的灵敏度、特异性、PPV 和 NPV 分别为 0.90、0.75、0.80 和 0.87。基于临床和内镜数据组合训练的模型在外部验证队列中的 AUC 为 0.94,诊断 EoE 的灵敏度、特异性、PPV 和 NPV 分别为 0.94、0.68、0.77 和 0.91。
结论:我们的软件集成模型(https://webapplicationing.shinyapps.io/PointOfCare-EoE/)可在即时护理时使用,以改善 EoE 的诊断工作流程并优化资源分配。
Rev Gastroenterol Mex. 2017
Scand J Gastroenterol. 2016-3
Clin Gastroenterol Hepatol. 2023-11
Korean J Gastroenterol. 2010-11
United European Gastroenterol J. 2022-6
Bioengineering (Basel). 2025-8-8
World Allergy Organ J. 2025-4-25