文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能工具在成人吞咽困难的嗜酸性食管炎诊断中的应用:即时护理使用的研发、外部验证和软件开发。

Artificial Intelligence Tools for the Diagnosis of Eosinophilic Esophagitis in Adults Reporting Dysphagia: Development, External Validation, and Software Creation for Point-of-Care Use.

机构信息

Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Centre for Oesophageal Diseases, Guy's and St. Thomas Hospital, London, United Kingdom.

Institute of Information Science and Technologies "A. Faedo", National Research Council of Italy (CNR), Pisa, Italy.

出版信息

J Allergy Clin Immunol Pract. 2024 Apr;12(4):1008-1016.e1. doi: 10.1016/j.jaip.2023.12.031. Epub 2023 Dec 27.


DOI:10.1016/j.jaip.2023.12.031
PMID:38154556
Abstract

BACKGROUND: Despite increased awareness of eosinophilic esophagitis (EoE), the diagnostic delay has remained stable over the past 3 decades. There is a need to improve the diagnostic performance and optimize resources allocation in the setting of EoE. OBJECTIVE: We developed and validated 2 point-of-care machine learning (ML) tools to predict a diagnosis of EoE before histology results during office visits. METHODS: We conducted a multicenter study in 3 European tertiary referral centers for EoE. We built predictive ML models using retrospectively extracted clinical and esophagogastroduodenoscopy (EGDS) data collected from 273 EoE and 55 non-EoE dysphagia patients. We validated the models on an independent cohort of 93 consecutive patients with dysphagia undergoing EGDS with biopsies at 2 different centers. Models' performance was assessed by area under the curve (AUC), sensitivity, specificity, and positive and negative predictive values (PPV and NPV). The models were integrated into a point-of-care software package. RESULTS: The model trained on clinical data alone showed an AUC of 0.90 and a sensitivity, specificity, PPV, and NPV of 0.90, 0.75, 0.80, and 0.87, respectively, for the diagnosis of EoE in the external validation cohort. The model trained on a combination of clinical and endoscopic data showed an AUC of 0.94, and a sensitivity, specificity, PPV, and NPV of 0.94, 0.68, 0.77, and 0.91, respectively, in the external validation cohort. CONCLUSION: Our software-integrated models (https://webapplicationing.shinyapps.io/PointOfCare-EoE/) can be used at point-of-care to improve the diagnostic workup of EoE and optimize resources allocation.

摘要

背景:尽管人们对嗜酸性食管炎(EoE)的认识有所提高,但在过去的 30 年中,其诊断延迟一直保持稳定。需要提高 EoE 环境下的诊断性能并优化资源分配。

目的:我们开发并验证了 2 种即时护理机器学习(ML)工具,以便在就诊时在获得组织学结果之前预测 EoE 的诊断。

方法:我们在 3 个欧洲 EoE 三级转诊中心进行了一项多中心研究。我们使用从 273 例 EoE 和 55 例非 EoE 吞咽困难患者中回顾性提取的临床和食管胃十二指肠镜(EGDS)数据构建了预测性 ML 模型。我们在 2 个不同中心进行 EGDS 活检的 93 例连续吞咽困难患者的独立队列中验证了模型。通过曲线下面积(AUC)、灵敏度、特异性、阳性和阴性预测值(PPV 和 NPV)评估模型的性能。该模型整合到即时护理软件包中。

结果:仅基于临床数据训练的模型在外部验证队列中的 AUC 为 0.90,诊断 EoE 的灵敏度、特异性、PPV 和 NPV 分别为 0.90、0.75、0.80 和 0.87。基于临床和内镜数据组合训练的模型在外部验证队列中的 AUC 为 0.94,诊断 EoE 的灵敏度、特异性、PPV 和 NPV 分别为 0.94、0.68、0.77 和 0.91。

结论:我们的软件集成模型(https://webapplicationing.shinyapps.io/PointOfCare-EoE/)可在即时护理时使用,以改善 EoE 的诊断工作流程并优化资源分配。

相似文献

[1]
Artificial Intelligence Tools for the Diagnosis of Eosinophilic Esophagitis in Adults Reporting Dysphagia: Development, External Validation, and Software Creation for Point-of-Care Use.

J Allergy Clin Immunol Pract. 2024-4

[2]
Eosinophilic Esophagitis-Related Food Impaction: Distinct Demographics, Interventions, and Promising Predictive Models.

Dig Dis Sci. 2025-2

[3]
A Clinical Prediction Tool Identifies Cases of Eosinophilic Esophagitis Without Endoscopic Biopsy: A Prospective Study.

Am J Gastroenterol. 2015-9

[4]
How to improve the diagnosis of eosinophilic esophagitis: Experience from a case series in Mexico.

Rev Gastroenterol Mex. 2017

[5]
Evaluation of narrow-band imaging signs in eosinophilic and lymphocytic esophagitis.

Endoscopy. 2017-5

[6]
Incidence and features of eosinophilic esophagitis in dysphagia: a prospective observational study.

Scand J Gastroenterol. 2016-3

[7]
Development and Validation of the Veterans Affairs Eosinophilic Esophagitis Cohort.

Clin Gastroenterol Hepatol. 2023-11

[8]
[Clinical implications of endoscopically suspected eosinophilic esophagitis].

Korean J Gastroenterol. 2010-11

[9]
Accurate and timely diagnosis of Eosinophilic Esophagitis improves over time in Europe. An analysis of the EoE CONNECT Registry.

United European Gastroenterol J. 2022-6

[10]
Clinical and endoscopic characteristics do not reliably differentiate PPI-responsive esophageal eosinophilia and eosinophilic esophagitis in patients undergoing upper endoscopy: a prospective cohort study.

Am J Gastroenterol. 2013-10-22

引用本文的文献

[1]
Integrating AI with Advanced Hyperspectral Imaging for Enhanced Classification of Selected Gastrointestinal Diseases.

Bioengineering (Basel). 2025-8-8

[2]
Esophageal and Oropharyngeal Dysphagia: Clinical Recommendations From the United European Gastroenterology and European Society for Neurogastroenterology and Motility.

United European Gastroenterol J. 2025-7

[3]
Eosinophilic esophagitis and allergic susceptibility: A systematic review and meta-analysis.

World Allergy Organ J. 2025-4-25

[4]
Optimal Assessment, Treatment, and Monitoring of Adults with Eosinophilic Esophagitis: Strategies to Improve Outcomes.

Immunotargets Ther. 2024-7-24

[5]
Target Trial Emulation: Improving the Quality of Observational Studies in Inflammatory Bowel Disease Using the Principles of Randomized Trials.

Inflamm Bowel Dis. 2025-3-3

[6]
The Dual Lens of Endoscopy and Histology in the Diagnosis and Management of Eosinophilic Gastrointestinal Disorders-A Comprehensive Review.

Diagnostics (Basel). 2024-4-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索