Department of Laboratory Science, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Department of Pediatric, Baiyun District Maternal and Child Healthcare Centre, Guangzhou, China.
Eur J Haematol. 2024 May;112(5):692-700. doi: 10.1111/ejh.14160. Epub 2023 Dec 28.
Non-anemic thalassemia trait (TT) accounted for a high proportion of TT cases in South China.
To use artificial intelligence (AI) analysis of erythrocyte morphology and machine learning (ML) to identify TT gene carriers in a non-anemic population.
Digital morphological data from 76 TT gene carriers and 97 controls were collected. The AI technology-based Mindray MC-100i was used to quantitatively analyze the percentage of abnormal erythrocytes. Further, ML was used to construct a prediction model.
Non-anemic TT carriers accounted for over 60% of the TT cases. Random Forest was selected as the prediction model and named TT@Normal. The TT@Normal algorithm showed outstanding performance in the training, validation, and external validation sets and could efficiently identify TT carriers in the non-anemic population. The top three weights in the TT@Normal model were the target cells, microcytes, and teardrop cells. Elevated percentages of abnormal erythrocytes should raise a strong suspicion of being a TT gene carrier. TT@Normal could be promoted and used as a visualization and sharing tool. It is accessible through a URL link and can be used by medical staff online to predict the possibility of TT gene carriage in a non-anemic population.
The ML-based model TT@Normal could efficiently identify TT carriers in non-anemic people. Elevated percentages of target cells, microcytes, and teardrop cells should raise a strong suspicion of being a TT gene carrier.
非贫血型地中海贫血症(TT)在华南地区 TT 病例中占比很高。
利用红细胞形态人工智能(AI)分析和机器学习(ML)技术,在非贫血人群中识别 TT 基因携带者。
收集 76 名 TT 基因携带者和 97 名对照者的数字化形态学数据。采用基于 AI 技术的迈瑞 MC-100i 对异常红细胞的百分比进行定量分析。进一步使用 ML 构建预测模型。
非贫血型 TT 携带者占 TT 病例的 60%以上。随机森林被选为预测模型,并命名为 TT@Normal。TT@Normal 算法在训练集、验证集和外部验证集中表现出色,能够有效地识别非贫血人群中的 TT 携带者。TT@Normal 模型中的前三个权重是靶形细胞、小细胞和泪滴细胞。异常红细胞百分比升高应强烈怀疑为 TT 基因携带者。TT@Normal 可以作为一个可视化和共享工具进行推广和使用。它可以通过一个 URL 链接访问,医务人员可以在线使用它来预测非贫血人群中 TT 基因携带的可能性。
基于 ML 的模型 TT@Normal 可以有效地识别非贫血人群中的 TT 携带者。靶形细胞、小细胞和泪滴细胞百分比升高应强烈怀疑为 TT 基因携带者。