文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于计算机断层扫描的放射组学预测直肠癌神经周围侵犯状态的联合列线图的开发与验证

Development and validation of a combined nomogram for predicting perineural invasion status in rectal cancer via computed tomography-based radiomics.

作者信息

Liu Jiaxuan, Sun Lingling, Zhao Xiang, Lu Xi

机构信息

Department of Radiology, The Fourth Affiliated Hospital of China Medical University, Liaoning, China.

Institute of Innovative Science and Technology, Shenyang University, Liaoning, China.

出版信息

J Cancer Res Ther. 2023 Dec 1;19(6):1552-1559. doi: 10.4103/jcrt.jcrt_2633_22. Epub 2023 Dec 28.


DOI:10.4103/jcrt.jcrt_2633_22
PMID:38156921
Abstract

AIM: This study aimed to create and validate a clinic-radiomics nomogram based on computed tomography (CT) imaging for predicting preoperative perineural invasion (PNI) of rectal cancer (RC). MATERIAL AND METHODS: This study enrolled 303 patients with RC who were divided into training (n = 242) and test datasets (n = 61) in an 8:2 ratio with all their clinical outcomes. A total of 3,296 radiomic features were extracted from CT images. Five machine learning (ML) models (logistic regression (LR)/K-nearest neighbor (KNN)/multilayer perceptron (MLP)/support vector machine (SVM)/light gradient boosting machine (LightGBM)) were developed using radiomic features derived from the arterial and venous phase images, and the model with the best diagnostic performance was selected. By combining the radiomics and clinical signatures, a fused nomogram model was constructed. RESULTS: After using the Mann-Whitney U-test and least absolute shrinkage and selection operator (LASSO) to remove redundant features, the MLP model proved to be the most efficient among the five ML models. The fusion nomogram based on MLP prediction probability further improves the ability to predict the PNI status. The area under the curve (AUC) of the training and test sets was 0.883 and 0.889, respectively, which were higher than those of the clinical (training set, AUC = 0.710; test set, AUC = 0.762) and radiomic models (training set, AUC = 0.840; test set, AUC = 0.834). CONCLUSIONS: The clinical-radiomics combined nomogram model based on enhanced CT images efficiently predicted the PNI status of patients with RC.

摘要

目的:本研究旨在创建并验证一种基于计算机断层扫描(CT)成像的临床-影像组学列线图,用于预测直肠癌(RC)术前神经周围侵犯(PNI)情况。 材料与方法:本研究纳入303例RC患者,按照8:2的比例分为训练数据集(n = 242)和测试数据集(n = 61),并获取了所有患者的临床结局。从CT图像中总共提取了3296个影像组学特征。利用动脉期和静脉期图像衍生的影像组学特征开发了5种机器学习(ML)模型(逻辑回归(LR)/K近邻(KNN)/多层感知器(MLP)/支持向量机(SVM)/轻量级梯度提升机(LightGBM)),并选择诊断性能最佳的模型。通过结合影像组学和临床特征,构建了融合列线图模型。 结果:在使用曼-惠特尼U检验和最小绝对收缩和选择算子(LASSO)去除冗余特征后,MLP模型在5种ML模型中被证明是最有效的。基于MLP预测概率的融合列线图进一步提高了预测PNI状态的能力。训练集和测试集的曲线下面积(AUC)分别为0.883和0.889,高于临床模型(训练集,AUC = 0.710;测试集,AUC = 0.762)和影像组学模型(训练集,AUC = 0.840;测试集,AUC = 0.834)。 结论:基于增强CT图像的临床-影像组学联合列线图模型能够有效预测RC患者的PNI状态。

相似文献

[1]
Development and validation of a combined nomogram for predicting perineural invasion status in rectal cancer via computed tomography-based radiomics.

J Cancer Res Ther. 2023-12-1

[2]
The value of machine learning based radiomics model in preoperative detection of perineural invasion in gastric cancer: a two-center study.

Front Oncol. 2023-6-14

[3]
Predictive Study of Machine Learning-Based Multiparametric MRI Radiomics Nomogram for Perineural Invasion in Rectal Cancer: A Pilot Study.

J Imaging Inform Med. 2025-4

[4]
Machine learning model based on enhanced CT radiomics for the preoperative prediction of lymphovascular invasion in esophageal squamous cell carcinoma.

Front Oncol. 2024-2-23

[5]
Computed tomography-based radiomics nomogram for prediction of lympho-vascular and perineural invasion in esophageal squamous cell cancer patients: a retrospective cohort study.

Cancer Imaging. 2024-10-4

[6]
Radiomics for predicting perineural invasion status in rectal cancer.

World J Gastroenterol. 2021-9-7

[7]
Preoperative Prediction of Perineural Invasion in Pancreatic Ductal Adenocarcinoma Using Machine Learning Radiomics Based on Contrast-Enhanced CT Imaging.

J Imaging Inform Med. 2024-11-11

[8]
Development and validation of a CT based radiomics nomogram for preoperative prediction of ISUP/WHO grading in renal clear cell carcinoma.

Abdom Radiol (NY). 2025-3

[9]
Computed tomography-based radiomics nomogram for the preoperative prediction of perineural invasion in colorectal cancer: a multicentre study.

Abdom Radiol (NY). 2022-9

[10]
Pretreatment MR-based radiomics nomogram as potential imaging biomarker for individualized assessment of perineural invasion status in rectal cancer.

Abdom Radiol (NY). 2021-3

引用本文的文献

[1]
MRI-based habitat, intra-, and peritumoral machine learning model for perineural invasion prediction in rectal cancer.

Abdom Radiol (NY). 2025-7-3

[2]
Dual-energy CT combined with histogram parameters in the assessment of perineural invasion in colorectal cancer.

Int J Colorectal Dis. 2025-5-27

[3]
Radiomics for prediction of perineural invasion in colorectal cancer: a systematic review and meta-analysis.

Abdom Radiol (NY). 2025-1-22

[4]
State-of-the-art performance of deep learning methods for pre-operative radiologic staging of colorectal cancer lymph node metastasis: a scoping review.

BMJ Open. 2024-12-2

[5]
Predictive Study of Machine Learning-Based Multiparametric MRI Radiomics Nomogram for Perineural Invasion in Rectal Cancer: A Pilot Study.

J Imaging Inform Med. 2025-4

[6]
Spectral CT in the evaluation of perineural invasion status in rectal cancer.

Jpn J Radiol. 2024-9

[7]
The value of machine learning based on CT radiomics in the preoperative identification of peripheral nerve invasion in colorectal cancer: a two-center study.

Insights Imaging. 2024-4-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索