Nantong University, Nantong, 226001, Jiangsu Province, China.
Department of Radiology, Shanxi Tumor Hospital, Shanxi, 030013, Shanxi Province, China.
Abdom Radiol (NY). 2022 Sep;47(9):3251-3263. doi: 10.1007/s00261-022-03620-3. Epub 2022 Aug 12.
To develop and validate a computed tomography (CT) radiomics nomogram from multicentre datasets for preoperative prediction of perineural invasion (PNI) in colorectal cancer.
A total of 299 patients with histologically confirmed colorectal cancer from three hospitals were enrolled in this retrospective study. Radiomic features were extracted from the whole tumour volume. The least absolute shrinkage and selection operator logistic regression was applied for feature selection and radiomics signature construction. Finally, a radiomics nomogram combining the radiomics score and clinical predictors was established. The receiver operating characteristic curve and decision curve analysis (DCA) were used to evaluate the predictive performance of the radiomics nomogram in the training cohort, internal validation and external validation cohorts.
Twelve radiomics features extracted from the whole tumour volume were used to construct the radiomics model. The area under the curve (AUC) values of the radiomics model in the training cohort, internal validation cohort, external validation cohort 1, and external validation cohort 2 were 0.82 (0.75-0.90), 0.77 (0.62-0.92), 0.71 (0.56-0.85), and 0.73 (0.60-0.85), respectively. The nomogram, which combined the radiomics score with T category and N category by CT, yielded better performance in the training cohort (AUC = 0.88), internal validation cohort (AUC = 0.80), external validation cohort 1 (AUC = 0.75), and external validation cohort 2 (AUC = 0.76). DCA confirmed the clinical utility of the nomogram.
The CT-based radiomics nomogram has the potential to accurately predict PNI in patients with colorectal cancer.
开发和验证来自多中心数据集的计算机断层扫描(CT)放射组学列线图,以用于术前预测结直肠癌的神经周围侵犯(PNI)。
本回顾性研究纳入了来自 3 家医院的 299 例经组织学证实的结直肠癌患者。从整个肿瘤体积中提取放射组学特征。应用最小绝对收缩和选择算子逻辑回归进行特征选择和放射组学特征构建。最后,构建了一个结合放射组学评分和临床预测因子的放射组学列线图。在训练队列、内部验证队列和外部验证队列中,使用受试者工作特征曲线和决策曲线分析(DCA)评估放射组学列线图的预测性能。
从整个肿瘤体积中提取了 12 个放射组学特征用于构建放射组学模型。放射组学模型在训练队列、内部验证队列、外部验证队列 1 和外部验证队列 2 的曲线下面积(AUC)值分别为 0.82(0.75-0.90)、0.77(0.62-0.92)、0.71(0.56-0.85)和 0.73(0.60-0.85)。该列线图通过 CT 将放射组学评分与 T 分期和 N 分期相结合,在训练队列(AUC=0.88)、内部验证队列(AUC=0.80)、外部验证队列 1(AUC=0.75)和外部验证队列 2(AUC=0.76)中均具有更好的性能。DCA 证实了该列线图的临床实用性。
基于 CT 的放射组学列线图具有准确预测结直肠癌患者 PNI 的潜力。