Suppr超能文献

基于计算机断层扫描的放射组学列线图预测结直肠癌的神经周围侵犯:一项多中心研究。

Computed tomography-based radiomics nomogram for the preoperative prediction of perineural invasion in colorectal cancer: a multicentre study.

机构信息

Nantong University, Nantong, 226001, Jiangsu Province, China.

Department of Radiology, Shanxi Tumor Hospital, Shanxi, 030013, Shanxi Province, China.

出版信息

Abdom Radiol (NY). 2022 Sep;47(9):3251-3263. doi: 10.1007/s00261-022-03620-3. Epub 2022 Aug 12.

Abstract

PURPOSE

To develop and validate a computed tomography (CT) radiomics nomogram from multicentre datasets for preoperative prediction of perineural invasion (PNI) in colorectal cancer.

METHODS

A total of 299 patients with histologically confirmed colorectal cancer from three hospitals were enrolled in this retrospective study. Radiomic features were extracted from the whole tumour volume. The least absolute shrinkage and selection operator logistic regression was applied for feature selection and radiomics signature construction. Finally, a radiomics nomogram combining the radiomics score and clinical predictors was established. The receiver operating characteristic curve and decision curve analysis (DCA) were used to evaluate the predictive performance of the radiomics nomogram in the training cohort, internal validation and external validation cohorts.

RESULTS

Twelve radiomics features extracted from the whole tumour volume were used to construct the radiomics model. The area under the curve (AUC) values of the radiomics model in the training cohort, internal validation cohort, external validation cohort 1, and external validation cohort 2 were 0.82 (0.75-0.90), 0.77 (0.62-0.92), 0.71 (0.56-0.85), and 0.73 (0.60-0.85), respectively. The nomogram, which combined the radiomics score with T category and N category by CT, yielded better performance in the training cohort (AUC = 0.88), internal validation cohort (AUC = 0.80), external validation cohort 1 (AUC = 0.75), and external validation cohort 2 (AUC = 0.76). DCA confirmed the clinical utility of the nomogram.

CONCLUSIONS

The CT-based radiomics nomogram has the potential to accurately predict PNI in patients with colorectal cancer.

摘要

目的

开发和验证来自多中心数据集的计算机断层扫描(CT)放射组学列线图,以用于术前预测结直肠癌的神经周围侵犯(PNI)。

方法

本回顾性研究纳入了来自 3 家医院的 299 例经组织学证实的结直肠癌患者。从整个肿瘤体积中提取放射组学特征。应用最小绝对收缩和选择算子逻辑回归进行特征选择和放射组学特征构建。最后,构建了一个结合放射组学评分和临床预测因子的放射组学列线图。在训练队列、内部验证队列和外部验证队列中,使用受试者工作特征曲线和决策曲线分析(DCA)评估放射组学列线图的预测性能。

结果

从整个肿瘤体积中提取了 12 个放射组学特征用于构建放射组学模型。放射组学模型在训练队列、内部验证队列、外部验证队列 1 和外部验证队列 2 的曲线下面积(AUC)值分别为 0.82(0.75-0.90)、0.77(0.62-0.92)、0.71(0.56-0.85)和 0.73(0.60-0.85)。该列线图通过 CT 将放射组学评分与 T 分期和 N 分期相结合,在训练队列(AUC=0.88)、内部验证队列(AUC=0.80)、外部验证队列 1(AUC=0.75)和外部验证队列 2(AUC=0.76)中均具有更好的性能。DCA 证实了该列线图的临床实用性。

结论

基于 CT 的放射组学列线图具有准确预测结直肠癌患者 PNI 的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验