Wang Haowen, Feng Shixuan, Sun Maoqin, Li Xue, Wang Chuanjin, Lin Zhongtai, Ma Mingliang, Li Tingxi, Ma Yong
School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
Bodo Plastics Co., Ltd, Zibo 256100, PR China.
J Colloid Interface Sci. 2024 Mar 15;658:889-902. doi: 10.1016/j.jcis.2023.12.132. Epub 2023 Dec 23.
In contemporary times, electromagnetic radiation poses a significant threat to both human health and the normal functioning of electronic devices. Developing composites as adsorption materials possess exceptional electromagnetic wave absorption performances can efficient address this critical issue. Herein, hollow core-shell NiCoO@polypyrrole nanofibers/reduced graphene oxide (NiCo-HFPR) composites are fabricated by the combination of electrostatic spinning, air calcination, in-situ polymerization, freeze-drying and hydrazine vapor reduction. As anticipated, NiCo-HFPR-0.2 exhibits noteworthy properties, with the minimum reflection loss (RL) of -61.20 dB at 14.26 GHz and 1.56 mm, as well as the effective absorption bandwidth (EAB) of 4.90 GHz at 1.57 mm. Additionally, the simulation procedure is employed to determine the radar cross-section (RCS) attenuation. In comparison to a singular perfect electrically conductive (PEC) layer, the PEC layer coated with NiCo-HFPR-0.2 consistently yields an RCS value below -10 dB m within the range of -60° < θ < 60°. The RCS attenuation value of the NiCo-HFPR-0.2 coating achieves an outstanding 31.0 dB m at θ = 0°, strongly affirming the ability to effectively attenuate electromagnetic wave in real-world applications. The employed experimental methodology, the meticulously crafted composite, and the simulation outcomes presented in this study bear great promise for the progressive advancement of both theoretical investigations and practical applications within the domain of electromagnetic wave absorption.
在当代,电磁辐射对人类健康和电子设备的正常运行都构成了重大威胁。开发具有卓越电磁波吸收性能的复合材料作为吸附材料能够有效解决这一关键问题。在此,通过静电纺丝、空气煅烧、原位聚合、冷冻干燥和肼蒸汽还原相结合的方法制备了中空核壳结构的NiCoO@聚吡咯纳米纤维/还原氧化石墨烯(NiCo-HFPR)复合材料。正如预期的那样,NiCo-HFPR-0.2表现出显著的性能,在14.26 GHz和1.56 mm处的最小反射损耗(RL)为-61.20 dB,在1.57 mm处的有效吸收带宽(EAB)为4.90 GHz。此外,采用模拟程序来确定雷达散射截面(RCS)衰减。与单一的理想导电(PEC)层相比,涂覆有NiCo-HFPR-0.2的PEC层在-60°<θ<60°范围内的RCS值始终低于-10 dB m。NiCo-HFPR-0.2涂层在θ = 0°时的RCS衰减值达到了出色的31.0 dB m,有力地证实了其在实际应用中有效衰减电磁波的能力。本研究中采用的实验方法、精心制备的复合材料以及模拟结果对于电磁波吸收领域的理论研究和实际应用的进一步发展具有很大的前景。