用于宽带电磁波吸收的FeO/PPy双碳化核壳状复合材料的高效合成

Efficient Synthesis of FeO/PPy Double-Carbonized Core-Shell-like Composites for Broadband Electromagnetic Wave Absorption.

作者信息

Elhassan Ahmed, Lv Xiaoshuang, Abdalla Ibrahim, Yu Jianyong, Li Zhaoling, Ding Bin

机构信息

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.

Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China.

出版信息

Polymers (Basel). 2024 Apr 20;16(8):1160. doi: 10.3390/polym16081160.

Abstract

Ever-increasing electromagnetic pollution largely affects human health, sensitive electronic equipment, and even military security, but current strategies used for developing functional attenuation materials cannot be achieved in a facile and cost-effective way. Here, a unique core-shell-like composite was successfully synthesized by a simple chemical approach and a rapid microwave-assisted carbonization process. The obtained composites show exceptional electromagnetic wave absorption (EMWA) properties, including a wide effective absorption band (EAB) of 4.64 GHz and a minimum reflection loss (RL) of -26 dB at 1.6 mm. The excellent performance can be attributed to the synergistic effects of conductive loss, dielectric loss, magnetic loss, and multiple reflection loss within the graphene-based core-shell-like composite. This work demonstrates a convenient, rapid, eco-friendly, and cost-effective method for synthesizing high-performance microwave absorption materials (MAMs).

摘要

日益增加的电磁污染在很大程度上影响着人类健康、敏感电子设备甚至军事安全,但目前用于开发功能衰减材料的策略无法以简便且经济高效的方式实现。在此,通过一种简单的化学方法和快速的微波辅助碳化过程成功合成了一种独特的核壳状复合材料。所获得的复合材料表现出优异的电磁波吸收(EMWA)性能,包括4.64 GHz的宽有效吸收带宽(EAB)以及在1.6 mm处-26 dB的最小反射损耗(RL)。这种优异性能可归因于基于石墨烯的核壳状复合材料内部的传导损耗、介电损耗、磁损耗和多重反射损耗的协同效应。这项工作展示了一种用于合成高性能微波吸收材料(MAMs)的便捷、快速、环保且经济高效的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34e1/11053598/e34464f50cec/polymers-16-01160-g001.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索