Liu Yi, Huang Qian, He Mengyun, Chen Tingting, Chu Xia
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
Acta Biomater. 2024 Mar 1;176:356-366. doi: 10.1016/j.actbio.2023.12.031. Epub 2023 Dec 30.
Atherosclerosis is the main cause of a series of fatal cardiovascular diseases, characterized by pathological accumulation of apoptotic cells and lipids. Pro-phagocytic antibody-based or pro-autophagy gene-based therapies are currently being explored to stimulate the phagocytic clearance of apoptotic cells and lipid metabolism; however, monotherapies are only moderately effective or require high doses with unacceptable side effects. Herein, we engineered a specific nano-bioconjugate loaded with antisense oligonucleotides (ASOs) of mammalian target of rapamycin (mTOR) and modified with anti-signal-regulated protein-α antibody (aSIRPα) for macrophage-mediated atherosclerosis therapy. The specific nano-bioconjugate utilized acid-responsive calcium phosphate (CaP) as a carrier to load mTOR ASOs, coated with lipid on the surface of CaP nanoparticles (ASOs@CaP), and subsequently modified with aSIRPα. The resulting nano-bioconjugates could accumulate within atherosclerotic plaques, target to macrophages and reactivate lesional phagocytosis through blocking the CD47-SIRPα signaling axis. In addition, efficient delivery of mTOR ASOs inhibited mTOR expression, which significantly restored impaired autophagy. The combined action of mTOR ASOs and aSIRPα reduced apoptotic cells and lipids accumulation. This nanotherapy significantly reduced plaque burden and inhibited progression of atherosclerotic lesions. These results show the potential of specific nano-bioconjugates for the prevention of atherosclerotic cardiovascular disease. STATEMENT OF SIGNIFICANCE: Atherosclerosis is the main cause of a series of fatal cardiovascular diseases. Pro-phagocytic antibody-based or pro-autophagy gene-based therapies are currently being explored to stimulate the phagocytic clearance of apoptotic cells and lipid metabolism; however, monotherapies are only moderately effective or require high doses with unacceptable side effects. Herein, we engineered a specific nano-bioconjugate loaded with antisense oligonucleotides (ASOs) of mammalian target of rapamycin (mTOR) and modified with anti-signal-regulated protein-α antibody (aSIRPα) for macrophage-mediated atherosclerosis therapy. Our study demonstrated that the combined action of mTOR ASOs and aSIRPα reduced apoptotic cells and lipids accumulation. This nanotherapy significantly reduced plaque burden and inhibited progression of atherosclerotic lesions. These results show the potential of specific nano-bioconjugates for the prevention of atherosclerotic cardiovascular disease.
动脉粥样硬化是一系列致命心血管疾病的主要原因,其特征在于凋亡细胞和脂质的病理性积累。目前正在探索基于促吞噬抗体或基于促自噬基因的疗法,以刺激凋亡细胞的吞噬清除和脂质代谢;然而,单一疗法仅具有中等疗效,或者需要高剂量且伴有不可接受的副作用。在此,我们设计了一种特异性纳米生物偶联物,其负载有雷帕霉素哺乳动物靶标(mTOR)的反义寡核苷酸(ASO),并用抗信号调节蛋白α抗体(aSIRPα)进行修饰,用于巨噬细胞介导的动脉粥样硬化治疗。这种特异性纳米生物偶联物利用酸响应性磷酸钙(CaP)作为载体来负载mTOR ASO,在CaP纳米颗粒(ASOs@CaP)表面包被脂质,随后用aSIRPα进行修饰。所得的纳米生物偶联物可在动脉粥样硬化斑块内积聚,靶向巨噬细胞,并通过阻断CD47-SIRPα信号轴重新激活损伤部位的吞噬作用。此外,mTOR ASO的有效递送抑制了mTOR表达,这显著恢复了受损的自噬。mTOR ASO和aSIRPα的联合作用减少了凋亡细胞和脂质的积累。这种纳米疗法显著减轻了斑块负担,并抑制了动脉粥样硬化病变的进展。这些结果显示了特异性纳米生物偶联物在预防动脉粥样硬化性心血管疾病方面的潜力。
动脉粥样硬化是一系列致命心血管疾病的主要原因。目前正在探索基于促吞噬抗体或基于促自噬基因的疗法,以刺激凋亡细胞的吞噬清除和脂质代谢;然而,单一疗法仅具有中等疗效,或者需要高剂量且伴有不可接受副作用。在此,我们设计了一种特异性纳米生物偶联物,其负载有雷帕霉素哺乳动物靶标(mTOR)的反义寡核苷酸(ASO),并用抗信号调节蛋白α抗体(aSIRPα)进行修饰,用于巨噬细胞介导的动脉粥样硬化治疗。我们的研究表明,mTOR ASO和aSIRPα的联合作用减少了凋亡细胞和脂质的积累。这种纳米疗法显著减轻了斑块负担,并抑制了动脉粥样硬化病变的进展。这些结果显示了特异性纳米生物偶联物在预防动脉粥样硬化性心血管疾病方面的潜力。