Suppr超能文献

基于人工神经网络和逻辑回归的奥沙利铂所致肝损伤预测模型

Predictive Model of Oxaliplatin-induced Liver Injury Based on Artificial Neural Network and Logistic Regression.

作者信息

Huang Rui, Cai Yuanxuan, He Yisheng, Yu Zaoqin, Zhao Li, Wang Tao, Shangguan Xiaofang, Zhao Yuhang, Chen Zherui, Chen Yunzhou, Zhang Chengliang

机构信息

School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong-Shenzhen, Shenzhen, Guangdong, China.

出版信息

J Clin Transl Hepatol. 2023 Dec 28;11(7):1455-1464. doi: 10.14218/JCTH.2023.00399. Epub 2023 Dec 4.

Abstract

BACKGROUND AND AIMS

Identifying potential high-risk groups of oxaliplatin-induced liver injury (OILI) is valuable, but tools are lacking. So artificial neural network (ANN) and logistic regression (LR) models will be developed to predict the risk of OILI.

METHODS

The medical information of patients treated with oxaliplatin between May and November 2016 at 10 hospitals was collected prospectively. We used the updated Roussel Uclaf causality assessment method (RUCAM) to identify cases of OILI and summarized the patient and medication characteristics. Furthermore, the ANN and LR models for predicting the risk of OILI were developed and evaluated.

RESULTS

The incidence of OILI was 3.65%. The median RUCAM score with interquartile range was 6 (4, 9). The ANN model performed similarly to the LR model in sensitivity, specificity, and accuracy. In discrimination, the area under the curve of the ANN model was larger (0.920>0.833, =0.019). In calibration, the ANN model was slightly improved. The important predictors of both models overlapped partially, including age, chemotherapy regimens and cycles, single and total dose of OXA, glucocorticoid drugs, and antihistamine drugs.

CONCLUSIONS

When the discriminative and calibration ability was given priority, the ANN model outperformed the LR model in predicting the risk of OILI. Other chemotherapy drugs in oxaliplatin-based chemotherapy regimens could have different degrees of impact on OILI. We suspected that OILI may be idiosyncratic, and chemotherapy dose factors may be weakly correlated. Decision making on prophylactic medications needs to be carefully considered, and the actual preventive effect needed to be supported by more evidence.

摘要

背景与目的

识别奥沙利铂所致肝损伤(OILI)的潜在高危人群具有重要意义,但目前缺乏相关工具。因此,将构建人工神经网络(ANN)和逻辑回归(LR)模型来预测OILI的风险。

方法

前瞻性收集2016年5月至11月期间10家医院接受奥沙利铂治疗患者的医疗信息。我们使用更新后的鲁塞尔·优克福因果关系评估方法(RUCAM)来识别OILI病例,并总结患者和用药特征。此外,构建并评估了预测OILI风险的ANN模型和LR模型。

结果

OILI的发生率为3.65%。RUCAM评分中位数及四分位间距为6(4,9)。ANN模型在敏感性、特异性和准确性方面与LR模型表现相似。在区分能力方面,ANN模型的曲线下面积更大(0.920>0.833,P=0.019)。在校准方面,ANN模型略有改进。两个模型的重要预测因素部分重叠,包括年龄、化疗方案和周期、奥沙利铂的单次及总剂量、糖皮质激素药物和抗组胺药物。

结论

在优先考虑区分能力和校准能力时,ANN模型在预测OILI风险方面优于LR模型。基于奥沙利铂的化疗方案中的其他化疗药物可能对OILI有不同程度的影响。我们怀疑OILI可能是特异质性的,化疗剂量因素可能相关性较弱。预防性用药的决策需要仔细考虑,实际预防效果需要更多证据支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5140/10752815/e3dd8e09ccb3/JCTH-11-1455-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验