Suppr超能文献

使用机器学习的颅内压预测算法(I-CARE):训练与验证研究

IntraCranial pressure prediction AlgoRithm using machinE learning (I-CARE): Training and Validation Study.

作者信息

Fong Nicholas, Feng Jean, Hubbard Alan, Dang Lauren Eyler, Pirracchio Romain

机构信息

Department of Anesthesia and Perioperative Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, San Francisco, CA.

School of Medicine, University of California San Francisco, San Francisco, CA.

出版信息

Crit Care Explor. 2023 Dec 28;6(1):e1024. doi: 10.1097/CCE.0000000000001024. eCollection 2024 Jan.

Abstract

OBJECTIVES

Elevated intracranial pressure (ICP) is a potentially devastating complication of neurologic injury. Developing an ICP prediction algorithm to help the clinician adjust treatments and potentially prevent elevated ICP episodes.

DESIGN

Retrospective study.

SETTING

Three hundred thirty-five ICUs at 208 hospitals in the United States.

SUBJECTS

Adults patients from the electronic ICU (eICU) Collaborative Research Database was used to train an ensemble machine learning model to predict the ICP 30 minutes in the future. Predictive performance was evaluated using a left-out test dataset and externally evaluated on the Medical Information Mart for Intensive Care-III (MIMIC-III) Matched Waveform Database.

INTERVENTIONS

None.

MEASUREMENTS AND MAIN RESULTS

Predictors included age, assigned sex, laboratories, medications and infusions, input/output, Glasgow Coma Scale (GCS) components, and time-series vitals (heart rate, ICP, mean arterial pressure, respiratory rate, and temperature). Each patient ICU stay was divided into successive 95-minute timeblocks. For each timeblock, the model was trained on nontime-varying covariates as well as on 12 observations of time-varying covariates at 5-minute intervals and asked to predict the 5-minute median ICP 30 minutes after the last observed ICP value. Data from 931 patients with ICP monitoring in the eICU dataset were extracted (46,207 timeblocks). The root mean squared error was 4.51 mm Hg in the eICU test set and 3.56 mm Hg in the MIMIC-III dataset. The most important variables driving ICP prediction were previous ICP history, patients' temperature, weight, serum creatinine, age, GCS, and hemodynamic parameters.

CONCLUSIONS

IntraCranial pressure prediction AlgoRithm using machinE learning, an ensemble machine learning model, trained to predict the ICP of a patient 30 minutes in the future based on baseline characteristics and vitals data from the past hour showed promising predictive performance including in an external validation dataset.

摘要

目的

颅内压(ICP)升高是神经损伤潜在的毁灭性并发症。开发一种ICP预测算法,以帮助临床医生调整治疗方案,并可能预防ICP升高发作。

设计

回顾性研究。

设置

美国208家医院的335个重症监护病房(ICU)。

研究对象

来自电子ICU(eICU)协作研究数据库的成年患者被用于训练一个集成机器学习模型,以预测未来30分钟的ICP。使用留出的测试数据集评估预测性能,并在重症监护医学信息集市-III(MIMIC-III)匹配波形数据库上进行外部评估。

干预措施

无。

测量指标和主要结果

预测因素包括年龄、指定性别、实验室检查结果、药物和输液、出入量、格拉斯哥昏迷量表(GCS)各项指标以及时间序列生命体征(心率、ICP、平均动脉压、呼吸频率和体温)。每位患者在ICU的住院时间被分为连续的95分钟时间段。对于每个时间段,模型在非时变协变量以及以5分钟为间隔的12个时变协变量观测值上进行训练,并被要求预测最后一次观测到ICP值30分钟后的5分钟ICP中位数。从eICU数据集中提取了931例进行ICP监测的患者的数据(46207个时间段)。在eICU测试集中,均方根误差为4.51 mmHg,在MIMIC-III数据集中为3.5 mmHg。驱动ICP预测的最重要变量是既往ICP病史、患者体温、体重、血清肌酐、年龄、GCS和血流动力学参数。

结论

使用机器学习的颅内压预测算法,即一种集成机器学习模型,基于过去一小时的基线特征和生命体征数据训练以预测患者未来30分钟的ICP,在包括外部验证数据集在内的测试中显示出了良好的预测性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验